
Designer User Manual (Version 2.13)

1/16/2018
1 Introduction ... 4

2 What is New or Different? .. 4

3 Installation... 8

3.1 Starting designer – Windows .. 8

3.2 Starting designer – Macintosh .. 8

3.3 Starting designer – Linux .. 8

4 Overview ... 9

5 Getting Started .. 9

6 Laying track .. 11

6.1 The Grid Cell Cursor .. 11

6.2 Copy, Cut, and Paste ... 12

6.3 Track Color and Block Definitions ... 13

6.4 How CATS Draws the Layout .. 15

7 File Operations .. 16

7.1 Save ... 16

7.2 Save As ... 17

7.3 Open .. 17

7.4 New ... 17

7.5 Import .. 17

7.5.1 Design Elements ... 18

7.5.2 Modules... 18

7.5.3 Prototype Signals .. 18

8 Defining Devices .. 18

8.1 Defining Signals.. 18

8.2 Defining Decoder Chains .. 25

8.3 Defining JMRI Devices .. 28

9 Working with Tracks – Detection Blocks, Switch Points, and Crossings 30

9.1 Defining Blocks .. 32

9.1.1 Specifying the Control Discipline ... 33

9.1.2 Hidden, Dark, and Normal Blocks .. 35

9.1.3 Defining Track Detectors (Occupancy) .. 36

9.1.4 Station ... 36

9.2 Adding Decorations .. 36

9.2.1 Adding, Changing, and Removing Signals ... 36

9.2.2 Defining Stations and Depots ... 42

9.2.3 Giving the Track Section a Name ... 42

9.2.4 Adding a Picture ... 43

9.3 Defining Switch Points and Turnouts ... 43

9.3.1 Definitions in Common to All Routes .. 45

9.3.2 Defining Routes .. 45

9.3.3 Tracks Revisited – Puzzle Tracks ... 48

10 Creating Trains.. 55

10.1 Edit Trains ... 55

10.2 Save Trains.. 57

10.3 Load Trains ... 57

10.4 Edit Train Fields (or Crew Fields or Job Fields) .. 57

11 Jobs ... 60

11.1 Edit Jobs .. 60

11.2 Save Jobs ... 61

11.3 Load Jobs .. 61

11.4 Edit Job Fields... 61

12 Crew .. 61

12.1 Edit Crews ... 62

12.2 Save Crews.. 62

12.3 Load Crews ... 62

12.4 Edit Crew Fields ... 62

12.5 Legal Hours ... 63

13 Common Operations ... 63

13.1 Defining Decoder Addresses .. 63

13.2 Positioning Something in a Grid Cell ... 65

14 Fine Tuning the Presentation .. 65

14.1 Appearance ... 65

14.1.1 Colors .. 65

14.1.2 Fonts .. 67

14.1.3 Line Widths ... 69

14.1.4 Grid Size ... 69

14.1.5 Adjustments .. 69

14.1.6 Fast Clock ... 70

14.1.7 Engine Label ... 70

14.1.8 Include File ... 70

14.1.9 Flash Rate.. 70

14.1.10 Tee Base .. 70

14.1.11 Direction Arrow .. 70

14.1.12 Compress Screen ... 71

14.1.13 Automatic Wrapping ... 71

14.1.14 Lock Turnout Decoders .. 71

14.1.15 Reverse Local Operations ... 71

14.1.16 Screen Size .. 71

14.1.17 Keyboard Shortcuts ... 71

14.2 Where to Create Blocks .. 72

14.3 Yard Entrances .. 73

14.4 Placement of Decorations ... 75

14.5 Turnout Position Reports (Feedback) ... 75

14.6 Diode Matrices .. 75

14.7 Defining Signal Heads .. 77

14.8 Selecting Train Font Colors or Size .. 80

15 Networking ... 82

15.1 ServerPort ... 82

15.2 Start TrainStat Server .. 82

16 Troubleshooting .. 87

16.1 The Disappearing Window ... 88

16.2 Warnings and Error Messages .. 88

16.3 Java Logging ... 88

16.4 Signals Are not Working Right... 88

16.5 The Tracks are Drawn in Odd Colors ... 89

17 Installing and Building from the Source Code, Under eclipse 89

18 References ... 90

1 Introduction
This document is a tutorial on how to use designer, the layout description program.

designer is a graphics oriented program for describing a model railroad layout. It

creates an XML file that is used with CATS for controlling the model railroad

through a dispatcher panel. Please see the CATS documentation for information on

how to use CATS. Note: some of the features alluded to in this document have not

been implemented yet in CATS.

This version of designer was written with Java 1.5.0_22 but should run under a 1.4

compatible JRE (Java Runtime Environment). It does rely on log4j and jdom,

included with JMRI.

2 What is New or Different?
Date Version

July 29, 2005 0.15  Added job descriptions (11)

 Created metered interface for Loconet

messages (9.1.3)

September 8, 2005 0.16  Added a “turn off” option for an IOSpec

(9.3.1)

 Removed LOCKOFFCMD and

UNLOCKOFFCMD because “turn off” covers

them (9.3.1)

 Changed file menus to start looking in the

directory the program is run from (7)

 Added file name filters

 Added DTC (9.1.1)

 Added a fast clock flag (14.1.6)

November 11, 2005 0.17  Replaced the LL JMRI prefix with LH

 Reworked selection menus to use JTables with

fields that can be customized (10.4)

November 15, 2005 0.18  Added a time on duty field to the Crew (12.1)

 Added a way to set the Dead on Hours time

(12.5)

February 5, 2006 0.19  Minor bug fix

April 26, 2005 0.20  Added station name (9.1.4)

September 18, 2006 0.21  Implemented approach lighting (8.1)

 Implemented software light flashing (8.1,

14.1.9)

 Implemented file backup (7.1)

 Reworked decoder lists so that all outputs can

be a list (8.2)

 Added drop downs so new JMRI device types

can be added without rewriting this (8.3)

 Added train label selection (14.1.7)

 Added a panel file name (14.1.8)

 Add keyboard shortcuts (14.1.17)

October 22, 2006 0.22  Bug fix – no operational changes

February 10, 2007 0.23  Added MR prefix (8.3)

 Add instructions on creating a diode matrix

(14.6)

 Fixed bugs in constructing menus

 Fixed bug in saving fonts

 Adjustments (e.g. debounce) can be set in

designer (14.1.5)

 Can set CATS screen size in designer

(14.1.16)

 Added instructions for starting designer (3)

March 25,2007 0.24  Fixed a bug that allowed a 0 length file to be

backed up (see Section 7.1)

 Pop up a warning when a zero length file is

created (7.1)

 Fixed a bug where “LN” was used for a JMRI

turnout, rather than “LT” (8.3)

April 20, 2007 0.25  Added an option for an inverted “tee” as the

base to a signal (9.2.1, 14.1.10)

 Added an option to remove the arrowheads on

routes (14.1.10)

 Added an option to not shrink track (6,

14.1.12)

 Added an option to turnoff “smart” row

wrapping (6,14.1.13)

 Added an option to provide a lock on decoder

commands (9.3.2,14.1.14)

 Fixed a bug in reading the layout where text

strings would be mangled (missing spaces,

missing segments).

July 13, 2007 0.26  Revised how signals work to account for

intermediates.

 Fixed a bug resulting in a zero length file when

the layout is saved, if a signal has 0 heads.

August 18, 2007 0.27  Reworked the screen that assigns aspects to

each indication to make it shorter (8.1).

 Added “Stop and Proceed” to the indication

table (8.1).

 Added “Advance Approach” indications to the

indication table (8.1).

January 13, 2008 2.0  Changed from using jdom-jdk11.jar to

jdom.jar, as was done with JMRI 2. This

makes designer incompatible with versions of

JMRI prior to version 2.

March 2, 2008 2.01  Modified crossings (diamonds) so that the

crossing tracks are not in the same Block. This

change will affect older panels that have

crossings (9.3.3).

 Added filled in circles on track ends supporting

intermediate signals (9.2.1).

 Added a Format when writing XML files. This

fixes a problem that appeared in 2.0.

 Added a user name field when defining signal

heads to refer to a JMRI external SignalHead

(9.2.1, 14.7).

April 4, 2008 2.02  Added a minimum width on text fields when

entering data

 Added more explanation on how CATS

determines what signal indication to use (8.1)

 Fixed a bug when connecting non-adjacent

tracks on block boundaries

July 15, 2008 2.03  The cursor can be moved with the arrow keys.

 The screen will scroll, if the cursor would

move off the screen.

 The screen does not scroll to the upper left

corner when inserting or deleting a column or

row.

 Fixed up the designer.bat file under Windows

so XML methods could be found.

December 28, 2008 2.04  Added network configuration (14.8)

 Expanded use of “Station” field (9.1.4)

February 2, 2009 2.05  Fixed a bug in which CATS chains could not

be defined because 0 is an invalid address

(8.2).

 Resynchronized with latest JMRI names (8.3).

 Removed enforcement of an address being

numeric to support things like CBUS.

July 4, 2009 2.06  Added formatting of Train, Crew, and Jobs

XML files

 Reworked presentation of Train, Crew, and Job

editor panels.

 Added an “alignment” attribute for text in

Train, Crew, and Job tables.

 Added a global setting so that local control of

turnouts can be locked out in CATS (9.3.2.1).

 Added a trace to the log file capability when

reading in an XML file, allowing a user to see

which section in the file an error occurred by

setting DEBUG (17.3).

 Fixed some problems created by removing

Sections and saving the resulting layout.

 Added panels to define possible track

crossings; this implements track work like

“scissors” (9.3.3).

September 18, 2009 2.07  Added separate color definitions for stations

(9.2.2)

 Added separate fonts for labels (9.2.3) and

trains (10)

 Improved the error handling when reading in

an XML file (this should be transparent)

 Fixed a bug when editing Chains

 Changed the model used for tables (this should

be transparent)

 Fixed a bug when changing the type of user

defined fields in tables

November 20, 2009 2.08  Added a color to panel signals so that the user

can define the color when the signal is not

involved in a route (9.2.1 and 14.1.1)

 Bug fixes (see the release notes)

February 28, 2010 2.09  Added libraries for importing design elements

(7.5). A result is that File->New and File-

>Open clear out any work that has been done.

 Designer keeps track of where the last file used

is located (7)

 Removed some dead code when saving a

layout

 Fixed a bug when deleting a row or column

 Added track coloring to highlight problems

(6.3, 9.3, 17.5)

November 23, 2010 2.10  Added details on how to create a single slip

 Fixed a bug where non-adjacent track

connections were lost

 Fixed a bug where a station would disappear

when the station dialog was invoked

 Compiled under Java 1.5 so designer runs on

older systems

 Rewrote for Java 1.5 generics

January 7, 2012 2.11  Complies with JMRI compiler settings

 Completed lunar signal definitions

 Added configuration information for working

with JMRI Operations (15.3, 16)

January 23, 2012 2.12  Fixed bug in editing switchpoints – only one

leg would be saved

January 27, 2012 2.13  Fixed a bug where new names could not be

created on Sections

Table 1: Revision History

3 Installation
Designer requires some files supplied with JMRI - the log utility, XML parser,

and the Java Collections so it (designer.jar) should be copied into the same

directory as the JMRI executables. A “launcher” is supplied for each operating

system (Windows, MacOS X, Linux) that contains the magic for setting the Java

environment for running designer. The launcher also should be placed in the

main JMRI directory. Alternatively, it can be edited to supply the execution path

to the libraries.

Designer requires JMRI version 2.14, or later.

3.1 Starting designer – Windows

The easiest way to launch designer under Windows is to create a short cut to

designer.bat and place the shortcut on your desktop. As explained in the

troubleshooting section (17.1), it is also possible to bring up a command window,

“cd” to the JMRI directory and just enter “designer”. Because there are multiple

versions of Windows and multiple ways to install Java and JMRI, the script

contains several possible ways to launch designer. I am sure it does not cover all

possibilities, but should have a line for the common ones.

3.2 Starting designer – Macintosh

One way to start designer is to open a terminal window. In that window, navigate

to where designer.csh is installed and execute it. There may be other ways to set

shortcuts, but I do not have access to a Macintosh, so do not know them.

3.3 Starting designer – Linux

Since designer requires graphics, you must install a windowing package (e.g.

gnome or kde) on your computer. With the window manager running, you can

open a terminal window. In that window, navigate to the JMRI directory, where

you installed designer. You can execute designer from there (e,g,

“./designer.csh”, “csh designer.csh”, etc). Your window manager may also allow

you to create a shortcut that you can place on your desktop.

3.4 Windows 7

There are two keys in getting designer to work under Windows 7 (Vista): file

permissions and picking up the correct Java run time environment. If you have

problems see the troubleshooting section of this document for clues, but it is

likely the execution paths are not set correctly or the file permissions are too

restrictive.

4 Overview
Designer borrows heavily from the spread sheet paradigm of cells arranged in a

grid of columns and rows into a rectangle. Columns can be added or deleted to

make the grid array wider or narrower. Rows can be added or deleted to make the

grid array taller or shorter. Each cell may contain track, a label, a picture, or a

combination of the three1. Cells can be copied to the clipboard, removed or

pasted from the clipboard, facilitating rapid duplication and editing of layout

pieces.

A cell is a rectangle, with 4 edges (naturally). A section of track begins on one

edge and terminates on another, without making any curves. All six possible

orientations of tracks are supported. Thus, each track segment has two ends. If

two (or three) track segments terminate on the same edge, then the program

recognizes the switch points (however, see Section 9.3.3 for distinguishing

between switch points and a crossing). If an end does not have switch points,

then it is a candidate to be a block boundary. If it is a block boundary, then the

cell that shares its edge also has a block boundary on its sharing edge. Designer

recognizes blocks as all track segments that share adjoining edges without block

boundaries. Signals can be associated with edges that are block boundaries. The

signals can appear on the layout, on the dispatcher panel, or on both. Finally, all

of these elements can have DCC addresses associated with them, which is how

CATS controls the layout. Hopefully, all of this will be clearer as we walk

through the manual.

There are many ways to wire up a model railroad. In designing this program, I

have tried to support common ways of doing the wiring, that work in ways that

are expected.

5 Getting Started
Begin by running designer.bat (or designer.csh for Linux and Macintosh

systems). If everything installed correctly, you will see a window with a menu

bar and a 2 by 2 grid of blank cells.

1 A picture can be used to place something like a logo on the dispatcher panel. Because a picture

overwrites all drawing, it doesn’t make sense to place a picture and a label or track in the same cell.

Figure 1: Opening Screen

The menu bar has the following categories of things you can do:

 File has operations on files, similar to the way other windows based

programs have.

 Edit has operations for cutting, pasting, and changing the overall geometry

of the grid array.

 Devices is for describing signals and decoders.

 Appearance is for changing the appearance of classes of things on the

dispatcher panel (such as colors).

 Details is used for specifying the contents of a cell.

 Network is used when the CATS panel acts as a TrainStatus Server (See

Section 14.8)

 Train is for describing frequent trains. These are trains which are usually

or occasionally run.

 Job is for describing the Jobs on the railroad, which crew members

perform.

 Crew is for showing who is assigned to which train.

 Help currently shows the Version number of the program and the date it

was released.

The body of the window contains the drawing surface where the grid appears. As

it grows, scroll bars will appear, allowing you to create layouts that are larger than

the drawing surface and to move around the drawing. You can also resize the

window by pulling on the lower right hand corner, but if you pull too far, then

space will appear between the cells. Notice that there are headings on the left

most column and top row, to provide navigation references. When the drawing

surface is scrolled, these references may scroll off the drawing surface. This will

be fixed in a later version.

With that overview out of the way, let’s get started.

6 Laying track
Probably the first thing to do is lay the track and add the details later. So, get the

gross track plan down, and then add the stations, signals, etc. However, if you are

comfortable with using this program and know how you want the track plan to

look, you may save some effort by starting with full details on something like a

passing siding, then using “cut and paste” to duplicate it. I have found that I make

good progress starting by laying the mainline – a long straight horizontal track –

and adding sidings and spurs off of it.

One other way to lay track is to add in a design element from a file – see Section

7.5.

6.1 The Grid Cell Cursor

Note that one cell is framed in red. That cell is where the track will be placed.

Think of the red frame as a cell cursor. Click on Details -> Tracks. A pop-up

window (Figure 2: Track Selection Pop-Up) will show all six possible track

segments that can be placed in the cell. Select one or more by clicking the mouse

on either the picture or the checkbox next to it. When done selecting segments

(you can select more than one), click on Accept (or Cancel to not make any

changes). Then, the tracks will be painted on the cell and the red frame will not

have moved.

Figure 2: Track Selection Pop-Up

To pick another cell, position the mouse over it and click the left mouse button.

When you need more cells on the drawing surface, click on Edit->Insert Row

Above, Edit->Insert Row Below, Edit->Insert Column Before, or Edit->Insert

Column After to add a new row or column of blank cells. Alternatively, you can

move the cursor with the arrow keys.

The right column of the pop-up indicates the speed through a turnout. You can

manually select one or use the default (which is correct the vast majority of the

time). When “Default” is selected, the speed will be “Normal” for tracks not

involved in turnouts. For the legs of a turnout, the “Default” will yield “Normal”

speed for the “Normal” route (see Section 9.3) and “Medium” for all other legs.

The speed is used in determining the signal (see Section 8.1).

6.2 Copy, Cut, and Paste

You can cut, copy, and paste multiple cells. The way to do this is place the cell

cursor over one corner of the rectangle of cells that you want to cut or copy.

Move the mouse cursor to the diagonal corner of the rectangle, and click the left

mouse button while holding down the shift key. At that time, all selected cells

will be framed in red and the Details menu item will be disabled2. Then, if you

want to copy the cells, use Edit->Copy. Move the mouse to the upper left corner

of where you want the copy placed and touch the left mouse button. That will

move the cell cursor to the insertion point. Use Edit->Paste to place a copy of the

cells at that point. Note that this operation will not change the number of columns

2 The Details menu item is enabled only when a single cell has been selected.

or rows. If the area being copied will not fit on the existing cells, then nothing

will be copied. If the operation is not what you expected, use the Edit->Undo

operation to remove the paste. If you decide that you really did like the operation,

you can use Edit->Redo to “undo” the “undo”. The “undo” stack is not infinite,

but will hold multiple operations3.

Edit->Clear works similar to Edit->Copy except the selected cells are blanked.

You can also delete columns or rows. If you select Edit->Delete Row, then the

row(s) where the cell cursor is located will be removed from the track plan. If

you select Edit->Delete Column, then the column(s) containing the cell cursor

will be removed. Should you do one of those operations in error, Edit->Undo will

restore it.

6.3 Track Color and Block Definitions

Notice that the track you just placed is colored red. That is designer telling you

that CATS is going to be unhappy with that track. CATS demands that every

track segment be included in a block and for every block to have a name.

Assuming that you have not created any block boundaries, CATS will see your

layout as a single detection block. CATS will show only those blocks that are

named (this is something else that I will fix someday), so you need to name the

block. Position the cell cursor over a cell containing a track segment that is

somewhere on the edge of the grid array, say in column 1. Select Details->Track

Ends. This will pop up a window that lets you describe the edges of the cell that

have tracks terminating on them. There is one sub-window for each edge that has

a track. The sub-windows are labeled with the grid coordinates and the name of

the edge. Check the “Block Boundary” box on the sub-window identifying the

track end that is on the edge of the grid array. This will enable the Define Block

button. Push that button and another window will pop up. Add a name for the

block in the Block Name field. You can call it anything you want, but if you have

your feeder wires or block detectors named in some way, then using that name is

a handy documentation scheme.

3 The undo/redo operations are pretty course. They only apply to changes at a cell level. They do not apply

to changes in Details. They also may not give you back exactly what you had (or expect), if you string

several together or do other things (such as Details between Edits).

So, the meaning of the track colors is:

Figure 3: Grid Edge Window

Figure 4: Detection Block Definition

 Red – a problem that needs to be corrected. It could be because the track is

not included in a defined block or because a normal route has not been

defined through switch points (see Section 9.3).

 Grey – the Block is defined, but does not have an occupancy detector

defined (“dark territory”)

 White – the Block is defined and has occupancy detectors.

These colors can be changed (see Section 14.1.1).

6.4 How CATS Draws the Layout

So, you name your block, save your work, and fire up CATS, but something

doesn’t look right. CATS did not preserve the same proportions! There are

several things going on. First, CATS will attempt to put as much of your track

plan on the viewing area as it can. This means you can resize the window and

more (or less) of your track plan will show. In addition, CATS will try to “wrap”

your diagram. Suppose your diagram is wider than the view area. CATS will

start at the right hand side of the screen and work towards the left, looking for the

column on the right half of the area with the minimum number of horizontal

tracks. It will break the track plan there and try to place it below what is shown,

at the left hand side. The concept is like a word processor breaking what you

write into lines on the page. If you resize the window, you will see CATS

making the “wraps” at different places4. This means that when you place track in

designer, make it all linear – do not format the drawing area into bands.

However, if you want to force a particular geometry you can do so and later on,

this document will describe how to tell CATS that two track ends that do not

touch on the drawing are logically adjacent.

Finally, you may notice that some columns are not as wide as others. This is by

design. In order to fit as much layout on the view area as can fit, CATS will test

if a column from designer can be displayed half as wide. It can be if it does not

contain any track that is on a diagonal or has a label. So if you want the wide

spacing, you may have to pad by putting two horizontal tracks in adjacent

columns5.

Some people do not like CATS changing what was created in designer. Under the

Appearance menu item are two checkboxes that affect how CATS shows the

track. The Compress Screen checkbox controls shrinking the width of track. If

the box is checked, then CATS attempts to shrink the columns, as described

above. The Automatic Wrapping checkbox controls how CATS wraps track. If

the box is checked, then CATS tries to break a row on a column with the least

number of tracks. Neither one of these checkboxes have any affect in designer.

They only affect how CATS draws the track plan. They are options in designer

so that they can be saved with the layout description. They remove the need to set

those options whenever CATS runs.

4 This “auto-wrap” feature can be overridden – see Section 14.1.13.
5 This compression feature can also be overridden – see Section 14.1.12

7 File Operations
If you want to preserve your work when you end designer, you will need to save

it. When you want to resume your work, you will want to load it back into

designer. Both of these general operations require a file name and a place where

the file is stored. The first time in a session when you save or load a file,

designer will look in the same place that it is run for a file, using a standard

navigation window. Designer remembers when you navigate to a different

location and uses that location as the starting point, the next time a file is needed.

7.1 Save

Use File->Save to save your work. The first time in a session that you do this, the

program will ask you for the file name to save your work under. It presents a

standard browser window so you can place the file anywhere you have permission

to save files. By default, it will choose the folder from which designer is run as

the place to save your work.

designer has an inconsistency in its file naming convention. The file names it

shows are folders and files ending in .xml. The filter is intended to reduce the

number of file names you have to look through. The inconsistency is that

designer does not force the .xml suffix on any file it creates. You have to add it

when you create the file name. Consequently, if you save a file without that

suffix, it will not appear on the file selection list by default. You can select “show

all file types” (the specific procedure is operating system dependent) to see all the

files in a folder.

The program tries to be safe in that it remembers if the track plan has been

changed in any way. If it has and you try to do something that could lose those

changes, it will ask you if you want to save the changes. It tends to be a little too

safe and may ask you to save changes, even if you made none (another bug to

locate and fix).

It is a good idea to save your work often because there are some bugs that can

crash the program and I have not isolated the causes, yet. The program does

attempt to keep one old copy of your work around. When you save a layout, it

looks to see if a file with the same name already exists. If it does, it changes the

existing file’s name by appending “.bak” to it. This will replace any existing

backup files. If the existing file is empty (0 length), it will not be renamed. If the

program crashes while saving a file, the crashed file will not be backed up.

Because of the bugs, it is possible to create a zero length (empty) file. Though it

cannot correct the problem, designer will warn you when it has done so. So that

you do not lose everything when you quit, try removing some of the changes

since the last save, try another save, remove changes, etc.

7.2 Save As

Suppose you have been saving your work and now want to save it under a

different name, use the File->Save As menu option. If you use File->Save after

File->Save As, it will be saved under the name provided to any previous File-

>Save. It will not let you Save As to the same file name twice in a session. I

have not figured out why, yet.

7.3 Open

File->Open is the negative of File->Save and File->Save As. It is used to read in

an existing layout file. This is the operation used to resume working on a layout.

When this operation is selected, designer restores everything to as though it was

just started. Since there may be some unsaved work, designer will ask if you

want to save it before clearing it out. File->Open combines two other operations:

File->New, followed by File->Import (see below).

7.4 New

File->New erases everything that has been done since designer started up (except

anything saved will remain saved). It is used to start with a clean canvas without

ending and launching, again.

7.5 Import

File->Import reads in a saved layout (a library) without erasing any existing work.

It is a way to merge multiple layouts together, add some pre-canned design

elements to the existing layout, insert existing signal definitions, etc. When a file

is selected, designer will grab the track plan from the file and insert the upper

grid corner of the trackplan at the grid cursor location. It will expand the layout

in the horizontal and vertical directions as needed. Note that the library is not

inserted, but replaces existing track; thus, preserving any track not overlaid.

Selecting Edit->Undo will remove the tracks (but may not exactly recreate the

replaced track). Selecting Edit->Redo will add the tracks back at the current

cursor location. So, if you insert a library at the wrong place, you can undo,

move the cursor to the right location, and redo.

Tracks, information associated with tracks (e.g. Block definitions), Stations,

Signals, etc. will be added to the existing work. File->Import will also merge any

Devices (Section 8) defined in the file, but not any Appearances (Section 14.1),

Trains (Section 10), Crew (Section 12), or Jobs (Section 11). “Merging” is

defined as “if something in the file does not exist in the current trackplan, it is

added”. This means that things in the library file will not replace things with the

same name in the trackplan.

Here are three ways (by no means the only ways) to use libraries.

7.5.1 Design Elements

Over time, I hope a library of simple track structures (e.g. a passing siding or a

wye) will be created. These structures (or design elements) can provide building

blocks for assembling a layout, rather than having to build them by hand. To be

effective, they should be saved without any layout specific information (e.g.

decoder addresses, block names, etc.). They can be considered larger building

blocks for a layout.

7.5.2 Modules

A module group might create a library of module descriptions. Each module

description would be completely “wired” – decoder addresses, names, etc. When

the modules are set up, a CTC panel can be created by importing the appropriate

module libraries, in the order they are assembled.

7.5.3 Prototype Signals

Because signal definitions (Section 8.1) are imported and merged, it is possible to

create libraries that do not have tracks, but only signal indications and aspects.

These signal indications and aspects could be tailored for specific prototype

railroads. They would allow CATS users to share the signal rules for their

modeled railroads.

8 Defining Devices
Before diving into applying more details, it is useful to define things that will be

used in other places. Pull down the Devices tab and see that signals, decoder

chains, and JMRI devices can be defined.

8.1 Defining Signals

First, we will define the signal types that will be used on the railroad to protect

the blocks. A signal template defines a class of signals. All signals on the

layout are members of a signal template and the template describes what

aspects the signal may show6. So begin by Devices->Add Signal Template.

You will see a new pop-up window.

6 An aspect is the appearance of a signal – number of heads (arms), color of each head (arm), color

position, semaphore position, etc.

Figure 5: Signal Template Pop-Up

 Through it, you name the template (the top field) so that you can refer to it later;

the number of heads (some of the literature calls these arms) the signal has; and if

the signal uses semaphores or lights. The later is really not important in how the

layout operates, but is used for selecting which icons appear on the dispatcher

panel. There is one other button in the pop-up, Create Aspects. When you click

on it, you will see yet another pop-up window (Figure 6: Signal Aspect

Template). This window is a table. The speeds of the block(s) being protected by

the signals form the rows. The speeds of the following block(s) form the

columns. There are three cells below the table for “stopping” indications. Each

cell has a selection for the aspect for each head for the indication. If designer

finds no track that uses a particular speed, it makes the column and row for that

speed grey and those cells cannot be edited. This reduces the number of aspects

that you define. See below for a discussion of what indications are supported.

This window is used to tell CATS what aspect to use for each indication. If you

have signals with similar numbers of heads, but different aspects, then you should

create multiple signal templates.

CATS implements 4 speed, 2 block7 indication rules. This means that each signal

shows the speed through the block(s) that it is protecting. The speed is either

normal, limited, medium, or slow (if the signal is stop, then the train should not

pass the signal, unless it is showing stop and proceed or the engineer is given

permission to enter the block, and then the train should move at a restricting

speed, defined as meaning the train must be able to come to a complete stop in ½

the visible range – usually under 15 mph). Furthermore, CATS looks at not only

the block(s) protected by the signal, but the block(s) after it, protected by the next

signal. To illustrate, consider single track mainline, signaled in only one

direction, with travel from left to right.

7 To be precise, it is a 2 signal look ahead (rather than block) because a signal can protect multiple blocks

Figure 6: Signal Aspect Template

S1 is the signal on the left. S2 is the signal in the center and S3 is the signal on

the right. S1 protects two blocks. The first has a normal speed and the second is

medium speed (assume it goes through a populated area with several crossings).

The other two signals protect blocks with normal speed. The protected speed for

S1 will be medium because that is the slowest speed protected by the signal. The

protected speed for S2 and S3 will be normal. Thus, the “clear” indication

presented by S1 will be the cell at the Medium row, and the Normal column,

ARA 283 of Figure 6. When S2 is showing Halt, S1 will show the cell at row

Medium, column Halt (ARA 286). Suppose Advance is checked and S3 is

showing Halt. S2 will show row Normal, column Halt (ARA 285), S1 will show

row Medium, column Advance (Advance Medium).

This may seem inflexible, but is actually more complex than is needed on most

model railroads and the ability to define multiple signal templates with different

aspects provides you with ways to work around the limitations. For example, to

simulate route signaling (where the aspect shows the route the train will take

rather than the speed), define the straight path through an OS section as normal

speed and a track section on the diverging route as medium speed. There are

subtle differences in the indications, depending upon which track section(s) are

set to medium. If the siding is medium speed, then when the switch at either end

is set for the siding, the protecting signal will show Medium Clear or Medium

Approach (depending upon the signal protecting the next block). However, if the

diverging route at only one end is set to medium, then only its protecting signals

will present a Medium indication. The signals at the other end will not. This

difference is because a signal takes on the most restrictive speed of any block it

protects. The signal protecting entry into the siding from the main protects the

Figure 7: Example of Signal Coverage

diverging route through the switch and the siding. Since the siding is protected by

both end signals (the signals overlap), making the siding speed medium affects

both end signals (but does not affect the exit signals from the siding). Making the

diverging route of one turnout medium, affects the entry signal into the siding and

the exit signal, but neither signal at the other end of the siding.

The 4 speed, 2 block analysis may seem like overkill, but it lets you show off

those multi-head signals with solid and flashing lights. Furthermore, you do not

have to use all the capability. If you set all the main track speeds to normal and

all siding speeds to medium, the signals will probably work like you want them to.

Alternatively, do not set any speeds and CATS will consider all diverging routes

to be medium; thus, providing route signaling.

Notice that some of the cells are in grey and cannot be changed. With the

exception of the “Advance” column, these indications are not needed because no

track has been defined with that speed. You should be aware of a potential

problem. The aspects are created based on the speeds used at the time the aspects

are created. If you later assign a track a speed not used before, the aspects will be

out of date. However, every indication has a default aspect, so if you do not

replace the aspect, CATS will use the default.

The “Advance” column is special. CATS actually looks more than two signals

ahead. If the third signal is in a “stop” state, the second signal will show

“Approach”. If you check the “Advance” column heading, rows in the column

can be edited and the indication will support “Advance Approach”. This provides

the engineer with possibly two signals before seeing the “stop”. CATS does this

based on the following:

 A stop condition cancels out the speed.

 A stop condition in the next block forces an Approach speed in the

protected block, which cancels the speed.

 Thus, the “Advance” indication combines the speed of the protected block

with the “Approach” of the subsequent block to yield “Advance

Approach” (normal followed by Approach), “Advance Limited Approach”

(limited speed, followed by Approach), “Advance Medium Approach”

(medium speed followed by Approach), and “Advance Slow Approach”

(slow speed followed by Approach).

Advance indications should be used to protect short blocks (which is probably

more typical in model railroads, than on the prototype), to give the engineer some

advance notice that the train needs to be slowed down.

On the Create Aspects window (Figure 6: Signal Aspect Template), there is a pull

down selection for each head for each indication. These are the common colors

or blade positions. Some of them require flashing. If your hardware supports

flashing, then use your hardware. If your hardware does not support flashing,

then CATS will do it in software. These selections are only labels (much like the

name of the signal template is a label), so if you have a blue light and no white,

then pretend that the white selection actually selects the blue and use white where

you want blue. CATS does not read the color on the layout and knows no

difference. You can use red as green and vice versa, if you want, but that could

get confusing quickly.

The top selection always applies to the top head. The lower selection always

applies to the head under it. The bottom selection always applies to the lowest

head.

Though not exactly correct for 4 speed, 2 block signaling, the following chart

shows how CATS decides what indication to give to a signal. To use it, read

down the left column, locating the speed of the block(s) being protected by the

signal. Then read across the row for the column with the speed of the following

block(s). The unqualified numbers refer to the AAR rule. The CROR numbers

are the Canadian Rail Operating Rule. The latter are included to fill in gaps in the

AAR rules. You should not get stuck on these rule numbers. They are used to

provide a common reference for indications. Every railroad seems to use

different numbers. For example, on the BNSF, AAR rule 281 (Clear) translates to

BNSF Rule 9.1.3 (also named Clear).

 Next

Protected

Normal Limited Medium Slow Halt

Normal 281 281-B 282 284 285

Limited 281-C CROR 412 CROR 413 CROR 413 281-D

Medium 283 CROR 417 283-A 283-B 286

Slow 287 CROR 422 CROR 423 CROR 424 288

Restricting 290 290 290 290 290

Halt 292 292 292 292 292

Table 2: Indication Rules

Acknowledgment: James P. G. Sterbenz and Mark D. Bej, M.D.

The following example shows the aspects the Crandic uses for each indication.

G means green, Y means yellow, R means red, and r means flashing red. An *

signifies that there is no situation on the Crandic where it can happen, but it is

included for completeness8.

 Signal

Indication

1 head light 2 head light 3 head light

281: Clear G G/R G/R/R

281-B Approach

Limited

Not Used Not Used Not Used

8 Someday, I would like to give the dispatcher the ability to place “slow orders” on a segment of track and

the signals could reflect the “slow orders”, so the dispatcher would have the ability to change the effective

speed of any segment of track and some of these situations could happen.

282: Approach

Medium

G Y/Y* Y/Y/R*

284: Approach

Slow

G Y/R* Y/R/R*

285: Approach Y Y/R Y/R/R

281- Limited Clear Not Used Not Used Not Used

CROR 412

Limited Approach

Limited

Not Used Not Used Not Used

CROR 413

Limited Approach

Medium

Not Used Not Used Not Used

CROR 414

Limited Approach

Slow

Not Used Not Used Not Used

281-D Limited

Approach

Not Used Not Used Not Used

283: Medium

Clear

(Diverging Clear)

Y R/G R/G/R

CROR 417

Medium Approach

Limited

Not Used Not Used Not Used

283-A Medium

Approach Medium

Not Used Not Used Not Used

283 – B Medium

Approach Slow

Y* R/Y* R/Y/R*

286 Medium

Approach

(Diverging

Approach)

Y* R/Y R/Y/R

287 Slow Clear

(Diverging Clear

Slow)

Y* R/Y* R/R/G

CROR 422 Slow

Approach Limited

Not Used Not Used Not Used

CROR 423 Slow

Approach Medium

Y* R/Y* R/R/Y*

CROR 424 Slow

Approach Slow

Y* R/Y* R/R/Y*

288: Slow

Approach

(Diverging

Approach Slow)

Y* R/Y* R/R/Y

290 Restricting r r/R r/R/R

292: Stop R R/R R/R/R

Table 3: Crandic Aspects

Finally, the signal aspect has an “Approach Lighting” checkbox. Set the

checkmark if you want CATS to turn on a signal only when the block in front of

it is occupied. This means that your signals must support “off” as well as the

aspects you define. If you select approach lighting, be sure your hardware can

turn a light off.

8.2 Defining Decoder Chains

Sometimes you want multiple commands to be sent to the layout when something

happens. For example, in a staging yard, you select a track and want the ladder to

align itself for that track (see also Section 14.6). A chain associates a sequence of

decoder commands with a single pseudo-decoder. The Decoder Chain pull down

is used to add, delete, or edit a chain.

The number is used in constructing the JMRI system name and the User Name is

the JMRI user name (see 13.1). The number cannot be 0. A JMRI system name

is a 2 letter prefix, followed by a number, which is the “address” of a device of

the type indicated by the prefix. For a decoder chain, the prefix is “IC” (Internal

Chain) by default, but this can be changed (see the next section). The “edit”

column is a button, when pushed launches the chain editing window.

A chain is edited (defined) with the following window.

Figure 8: List of Decoder Chains

 This window looks different from others that are used for specifying a decoder

address (13.1) because there can be an unlimited number of decoders in a chain.

A chain can be in a chain. However, CATS will run out of memory quickly if

one chain includes another which includes the first. The delay column deserves

special notice. It specifies the number of milliseconds after sending the decoder

command before the next is sent. This is useful for doing something like creating

a pulse. The other columns will be discussed later.

In general, when invoking a Chain, you should select the “Close” box. When the

Chain is executed, it will execute the defined setting for each of its elements. If

the “Throw” polarity is checked, then the opposite setting will be requested of

each element. If “Undo”is checked, then the opposite request will be honored;

otherwise, the decoder will ignore the opposite request.

You can think of a decoder chain as a little brother to the JMRI route device type.

Chains can be used for sending commands to a layout, but not for receiving status

from a layout. Designer will not prevent the latter, but CATS will.

Figure 9: Decoder Chain Definition

Figure 10 Chain Definition

8.3 Defining JMRI Devices

CATS uses JMRI libraries for communicating with the layout. CATS builds on

the work of the JMRI developers. This means it has to be told how to use JMRI

code. This panel is used to tell CATS which JMRI interfaces to use.

Each row corresponds to a JMRI device. The Prefix column is the two letter

designator for the JMRI device and should follow the JMRI naming convention.

The first letter is the interface to the layout and the second is the type of device.

You can change them, but many JMRI device managers will reject the different

designator. The JMRI Class column is for advanced users. It refers to internal

pieces of the JMRI code. You should probably not change any of these. The

Type column is the type of JMRI device. As of this writing, the JMRI interfaces

(first letter) are:

Letter Connection system

A CTI Acela

C C/MRI serial

D Direct packet drive (SRCP)

E Easy DCC

Figure 11: JMRI Device Prefixes

G Grapevine (ProTrak)

I Internal

K Maple Systems

L Loconet

M Metered9 and MRRLCB

N North Coast Engineering

O Oak Tree

P XPA

Q QSI programmer interface

R RPS

S SPROG

T Lionel TMCC

U ESU ECoS

V TracTronics SECSI

X Xpressnet via LI100

Z Zimo MX-1

Table 4: JMRI Prefixes

The JMRI device types (second letter) are

Letter Device

C Chain10

H Signal head

L Light

M Memory

P Power manager

R Reporter

R Route

S Sensor

T Turnout

X Logix

Table 5: JMRI Device Types

The final column is a check box. It should be checked if your layout will use

those kinds of devices and not checked if it will not. Most people will need to

only change the check boxes in this window. However, as the JMRI developers

add more interfaces, CATS can adapt by simply adding new rows (or changing

columns) in this table.

9 This prefix is not part of JMRI. It was created to solve some problems we were having with Loconet

devices and is the default prefix. A “metered light” waits between sending Loconet commands. The wait

is to give the device time to react to the command. A “metered sensor” holds an active report for a few

seconds before reporting it to CATS. It is an attempt to filter transient occupation reports. If the sensor

does not stay active for a few seconds, it is simply dropped. Our experience has been that detectors usually

report active immediately, but hold inactives for up to 4 seconds. Thus, an occupied report should never be

less than four seconds.
10 ditto

Only the JMRI designators checked will appear in the decoder selection windows

(8.2 and 13.1). Though you could check them all, you will save yourself some

work when defining decoders if you check only the ones you want to use. In

addition, CATS will not work as hard because it will not create unused device

managers.

With a big exception, in general, it is sufficient to select the “Sensor” devices for

your interface (for receiving status and for sending commands). JMRI provides

additional logic for the other device types, which could interfere with CATS (or

vice versa). JMRI has created the “Memory”, “Recorder”, and “Reporter”

devices for the use of supplemental programs. CATS recognizes them so CATS

actions can stimulate other scripts and CATS can respond to the actions of other

scripts.

The exception is Loconet. Loconet users should be aware of a couple of things.

The JMRI “LH” decoder type is missing. This is because JMRI associates “LH”

decoders with the SE8C and “LH” does not fit into the JMRI decoder manager

scheme. Second, there are three message types exchanged with Loconet

decoders:

 OPC_INPUT_REP. This is the message generated by Loconet sensors

(e.g. BDL block detectors and the SE8C DSx inputs). The “MS” decoder

type listens for and sends this message type.

 OPC_SW_REP. This is the message generated by push button switches

(e.g. the SE8C SWx inputs). The “MR” decoder type listens for and sends

this message type.

 OPC_SW_REQ. This is the message sent to stationary decoders (e.g.

SE8C or DS-54) requesting that they change an output. It is also the

message sent by a throttle to perform the same function. The “ML”

decoder type sends and listens for this message type.

So for connecting to a Loconet network, you will need to determine which of the

three messages is accepted or sent by each of your stationary decoders. For

controlling decoders, you will usually select “ML”. For receiving status from the

layout, it will usually be “MS”. For receiving push buttons, it will usually be

“MR”.

If you are not familiar with JMRI naming schemes, the “L” designator is for

“Lights”. Do not confuse a “Light” with a signal light. A “Light” is intended for

controlling ambient lighting, building lights, and other illumination devices that

have the characteristic of “brightness”. A single bulb on a signal is usually

controlled by a “Turnout” (“T”) (as is the position of a turnout). In other words, a

“T” controls a binary output.

9 Working with Tracks – Detection Blocks, Switch
Points, and Crossings

Let’s assume that you have enough track drawn that you can see that it fits on

CATS and has what you want the dispatcher or computer to know about (the two

are not the same, as will be explained in the discussion about hidden track). This

might be a good time to begin adding details to the detection blocks (or breaking

blocks into smaller detection blocks). A detection block is represented on the

track plan as logically contiguous cells, sharing a common detector and being

protected as a group by signals. Thus, each detection block has a name11

(remember that the block will not show up on CATS unless it has a name)

and an optional detector. If the end of one track section is a block boundary, then

the end of its neighbor that it shares an edge with must also be a block boundary.

So, let’s look at Details->Track Ends.

Begin by placing the cell cursor over a cell that has at least one track section in it,

and then select Details->Track Ends. A pop up window will appear that contains

a box describing each edge of the cell on which a track terminates.

 For reference, each box has the coordinates of the cell (column, row) and the

name of the edge. There are four kinds of boxes (2 are shown above):

 If two track ends touch on an edge and the edge in the adjacent section

also has two tracks that are continuations, then the edge could be either

switch points or a crossing (see Section 9.3.3).

 If more than one track section ends on the edge, then the edge has switch

points and there is a button for providing more information about the

points.

 If the shared edge on the adjacent cell does not have switch points, then

there are three buttons for defining a block boundary.

 If the shared edge on the adjacent cell has switch points, then there are no

additional buttons – the edge cannot be a block boundary because its

neighbor cannot be a block boundary12.

11 A track in a Block that does not have a name will be drawn in designer in red (Section 6)
12 The program does not permit points to be on block boundaries because drawing the block boundary gap

and points in CATS does not look good.

Figure 12: Edge Specification

However, all edges have a check box for “Joins to adjacent track”. This checkbox

is used to avoid drawing loops of track (and to keep drawings clean, as illustrated

in a “flyover” – See Figure 23: Flyover). On the prototype, there are very few

track plans equivalent to what is an oval (a continuous) loop in the model railroad

world. Designer will let you lay out a loop, but CATS will crash trying to handle

it. So, the way to lay out your diagram is linear, running left to right. Position the

cell cursor over the cell on the far left or far right, that you want to connect to the

other side of the diagram and uncheck Details->Track Ends -> Joins to adjacent

track on the edge that does not have a neighbor. This enables the “Column

number”, “Row number”, and “edge” fields. Fill them in with the column

number, row number, and edge of the logically adjacent track section. For

example, to connect the right side of the cell at column 92, row 4 with the left side

of the cell at column 3, row 10, place the cursor over the cell at column 92, row 4

and select Details->Track Ends -> Joins to adjacent track on the box titled RIGHT

and remove the checkmark. After removing the checkmark, click on “Column

number” and type 3 in the blank field. Then click on “Row number” and type 10

in the blank field. Move the cursor over to the “Edge” box and select “Left”.

Finally, click on “Accept”. The two cells are joined and you can insert or delete

cells between them and they remain joined. If you decide to disconnect them, you

can place a checkmark in Joins to adjacent track or remove either of the cells.

If a track does not join to an adjacent track, designer tries to highlight the

disconnect by putting a “tick” mark (short, perpendicular line) at the end that

“jumps” somewhere else. See Figure 23: Flyover.

But what about those other buttons, the ones that change depending on the

number of tracks terminating on the edge or the shared edge? The discussion on

switch points will be deferred while we look at detection blocks. If “Block

boundary” has a checkmark, then the end of the track is also the end of a detection

block. This allows you to define the characteristics of the block and, optionally,

add signals protecting the block. Let’s begin by defining the characteristics of a

detection block.

9.1 Defining Blocks

Select Details->Track Ends->Define Block and you will see another pop up

window (Figure 13: Detection Block Definition). If the “Block Name” field is

blank, be sure to name the block.

9.1.1 Specifying the Control Discipline

 Select one of the options for how signals protect the block:

 “Unknown” allows CATS to figure something out, which usually means it

complains and does not show any track sections in the block, so it is best

to pick another option.

 “CTC” selects “Centralized Traffic Control” (also called “Train Control

System” or “TCS”). This means that signals protecting the block by

default show “stop”. If the block is safe to enter (meaning that it is

unoccupied and there are no turnouts aligned against traffic entering the

block from the end a signal is on and the dispatcher has not granted local

switching or taken the block out of service) and the dispatcher sets a

signal, then one signal will go “non-stop”. All other signals protecting the

block remain “stop” because the dispatcher is allowing a train to move

through the block in one direction only.

Figure 13: Detection Block Definition

 “ABS” selects “Automatic Block Signaling”. This is a simple protection

scheme which works best when all traffic is in one direction, to prevent a

train from running into the back of a train in front of it. The basic concept

is to keep traffic moving, providing a “stop” indication only if an unsafe

condition exists. Thus, all signals protecting a block13 that is occupied are

“stop”; otherwise, an effort is made to show “non-stop”. The signals

protecting traffic approaching the block from adjacent blocks show

“approach” (assuming any is unoccupied) and the signal protecting the

next block away (in the direction of travel) is “clear”. Thus, there is a

block buffer around any occupied block with a warning that a train should

slow down because the next signal it sees may be stop (giving the engineer

some time to stop)14. Note that ABS does not consider the direction of

travel, only the location of occupied blocks (and turnout alignment, local

switching, maintenance, etc.).

 “APB-2” selects “Absolute Permissive Blocks, with a two block buffer”.

This is like ABS, but takes into consideration which direction the train

occupying a block has been moving. APB is better suited than ABS is for

single track operation with trains traveling both directions. The reason is

that if there are several ABS detection blocks between passing sidings, the

signals will allow two trains to enter the single track from opposite ends,

simultaneously, with the result that they will eventually end up nose to

nose and no where for either to go. Under ABS rules, an “approach”

signal just says that the protected block can be entered, but the next

cannot. It does not say that there is a train approaching. So APB works

by noting that when a train enters single track, then all signals protecting

the single track in the opposite direction turn to “stop”. The signals in the

direction of travel behave as ABS, but the signals in the opposite direction

behave as though a dispatcher set a direction of travel against them.

The “two block buffer” means that a yellow signal precedes the red in

front of the train, in the opposing direction and a green precedes the

yellow, so there are two blocks of warning in front of the train for

opposing trains to stop. However, this is often not enough and an

opposing train may still see a green signal followed by a red.

 “APB-3” selects “Absolute Permissive Blocks, with a three block buffer”.

This variation on APB extends the buffer in front of a train from 2 blocks

to three blocks and ensures that an opposing train will see at least one

yellow between the green and red signals. APB-3 has not been

implemented and behaves the same as APB-2.

 “DTC” selects “Direct Train Control”. This is actually a misnomer

because the prototype uses DTC without signals. This selection can

eliminate some paperwork on sections of layouts without visible signals.

Often the dispatcher will directly control trains by telling the train crew

13 Here, again, a signal can protect more than one detection block. It protects all blocks encountered

between it and the next signal.
14 However, see the discussion on “Advance” indications.

between which points on the layout the train is authorized to operate

within. For example, “Train 100, you are cleared from station A to station

B”. If the track from station A to station B is defined with multiple blocks

and defined to use DTC, the blocks behave like CTC – the dispatcher

reserves the route from A to B. As the train traverses the blocks, the

detectors fire (assuming detectors have been defined and are working) and

the occupied blocks light up. However, unlike CTC, when the detectors

release, the blocks do not return to “idle” but turn yellow. This “bread

crumb trail” is to remind the dispatcher that those blocks cannot be given

to another train until they have been taken away from the train they were

granted to.

Thus, the largest difference in “Control discipline” is how much control the

dispatcher has over signals. With CTC and DTC, no signal is “non-stop” without

the dispatcher doing something. With ABS or APB, the signals set themselves in

response to the trains.

Which discipline should you use and where? We usually set up the layout for

APB during open houses, when the dispatcher (if we have one) cannot devote as

much attention controlling trains. We use the same track plan, but use CTC for

operating sessions. We have a few sections of ABS (on the transition from

classification yard to main). There is a subtle distinction between CTC and APB.

CTC allows trains to run only if the dispatcher has created a route. APB tries to

let trains run unless it would not be safe. Thus, CTC signals tend to be “stop”.

APB signals tend to be “clear”. Prototype signaling tends to use “automatic”

signals between interlocking plants (of which an OS section is the most basic).

You make these CTC or APB. With CTC the “intermediate” signals will tend to

be “stop” until the dispatcher sets a route. With APB, the “intermediate” signals

will reflect track conditions. When the dispatcher sets a route, it will appear on

the panel and the opposing signals will tumble down to stop.

9.1.2 Hidden, Dark, and Normal Blocks

CATS recognizes three kinds of track: normal, hidden, and dark. Dark track

shows up on the dispatcher panel, but does not have an occupancy detector

associated with it; thus, it does not change colors as trains pass through it. Hidden

track is defined in designer, but is not painted on the CATS dispatcher panel.

Normal track has both detection and is painted. The “Track Occupancy

Detection” area of the pop up window (Figure 12) is used for telling CATS what

detectors are associated with which blocks. If that information is not filled in,

then the track is treated as “dark”. The “Show Block” checkbox is used for hiding

track, so it is not painted by CATS. Use hidden track for track that is controlled

by the computer, but not to be seen by the dispatcher (e.g. staging). An option is

to simply not include hidden track on the diagram. However, if you want the

computer to control turnouts on track the dispatcher does not see (for example)

then define the track in designer and uncheck the show block checkbox. Another

case to include hidden track is when you have track that you want to affect visible

track. For example, you want to put a signal on the staging track lead. So, you

put a detector and signal on the lead, then define the lead as using “ABS”

signaling and mark it as hidden. Something you probably do not want to do is

hide CTC track because the dispatcher could never set the signals.

Designer colors the track based upon if detectors are defined or not. If the track

is in a named Block and has both detectors defined, designer will draw it in the

Block Empty color. If the track is in a named Block and does not have both

detectors defined, designer will draw it in the Dark color. Finally, if the track is

not in a named Block, designer will draw it in the ERROR color (see Section

14.1.1 for color definitions).

9.1.3 Defining Track Detectors (Occupancy)

The bottom two panes on the block definition pane are used for defining the

occupancy detectors. As, mentioned above, if these are not specified, the block is

treated as “dark territory”. There is one pane for defining the “occupied” event

and one for defining the “vacated” event. Each pane has three components. See

13.1 for what how these three components are used.

9.1.4 Station

The Station field is used to tell CATS that several Blocks form some location on

the railroad. For example, the tracks in staging yard 1 may represent Argentine

Yard, so the “Station” field in all Blocks (each staging track) could have the same

entry, such as “A Yard”. This field is completely optional; however, if a Train

Status Client runs during an operating session, the location of trains will only be

reported when they are in blocks with the “Station” field defined. Similarly, if

you want CATS to interwork with JMRI Operations, then the “Station” field

should be the same as the corresponding “Location” in Operations (see Section 16

for more details).

9.2 Adding Decorations

This document uses the term “decorations” to mean optional things (such as

signals and depots) added to a section of track.

9.2.1 Adding, Changing, and Removing Signals

All changes to signals are made through Details->Track End->Define Signals. It

generates a pop up window.

Figure 14: Signal Definition Pop-up

At the bottom of the window is a list of known signal templates (see section 8).

Select the template that describes the signal protecting access to the track

segment from the associated grid edge. If there is a signal on the layout, check

Layout Signal Type. This will allow you to select one of the templates. Use the

Details button to pop up another window for defining the decoder addresses for

the signal (see below). The upper half of the window is used to tell CATS how

to draw the icon for the signal on the dispatcher panel. To place a signal icon on

the dispatcher panel, check Panel. If a signal template is selected, then the

program makes the icon conform to the kind of signal and number of heads. If a

signal template is not selected, then you can fill in the kind and number of heads

manually. You can name the signal in the Name field. This is optional, though I

recommend that you name each signal with a unique name. Eventually, I would

like to use the contents of this field to label the signal on the dispatcher panel.

CATS will use the signal name in generating the JMRI system name of each

SignalHead. It will also appear in traces. So, the signal name is useful in

troubleshooting.

There are four possible settings:

Layout Signal Type Panel Signal Type

checked checked Control Point

checked unchecked Intermediate

unchecked checked Place Holder

unchecked unchecked Virtual

Table 6: Signal Types

Control Point A Control Point is an icon on the dispatcher panel associated with

a signal on the layout. It exists to provide the dispatcher with a place to stop and

hold a train. Conversely, it provides the dispatcher with a place to indicate that a

train is permitted to proceed. A Control Point corresponds to an absolute signal.

When a dispatcher creates a route, the route propagates from one Control Point to

the next and no farther. In APB, a route (created when a train enters a block)

also propagates from one Control Point to the next. In addition, CATS

automatically promotes any signal protecting an APB interlocking plant (e.g. OS

section) to a Control Point.

Intermediate An Intermediate signal exists on the layout, but not on the

dispatcher panel. It is used to provide spacing between trains traveling in the

same direction. It is usually a permissive signal (i.e. a train may stop then go or

proceed slowly through a halt indication). An intermediate signal will propagate

a route, if conditions are safe to do so. If there is an unsafe condition, the signal

will show halt, but change to something less restrictive when the unsafe

condition is removed. If an Intermediate signal has a route leading into it, it will

propagate the route as soon as any blocking conditions are resolved.

Place Holder A Place Holder does not exist on the prototype because if there is

no signal in the field, there should be no signal on the dispatcher panel.

However, for completeness, it is allowed in CATS. It is actually useful on a

model railroad to provide a way to break up a staging track into multiple sections

to accommodate multiple trains.

Virtual All block boundaries have signals associated with them, even if neither

Layout Signal Type nor Panel is checked. These formless signals record the

status of the detection block that they protect and relay that status to the signals

that precede them (the signal a train encounters prior to the Virtual signal). Thus,

a “real” signal merges the status of the detection block it is protecting with the

status of any Virtual signal that follows it. The “real” signal may protect

multiple blocks.

If Layout Signal Type is not checked, then the signal symbols will be in a

different color on CATS, to remind the dispatcher that the engineer cannot see a

signal.

The middle fields are used for positioning the icon on the dispatcher panel. The

Panel checkbox must be checked for the icon to appear on the panel. After it is

checked, the lists next to it are enabled and an entry can be selected from each.

Use Placement in tile to control where the icon is placed in its grid. The entries

beginning with “Left” are used to position it along the left edge. The entries

beginning with “Low” are used to position it along the bottom, etc. Use Facing

Direction to control the rotation of the base of the icon. So, make some

selections. Look at the icon on the designer screen, then change them, as you

desire. It is best to be consistent. Getting the orientation correct takes a little

experience. It is best to think of a signal as a gatekeeper. It does not control a

train from leaving a block, but controls a train from entering a block. So, it

should be “facing” out from the block.

The base of a signal can be drawn in two different ways. The default is a

triangle. The apex of the triangle (the corner touching the circles) is a handy

reference for reminding dispatchers that the signal is for a train moving in that

direction. It can be considered the tip of an arrow head. Some prototype

displays use an inverted “tee’ to represent the base. You can select either. Under

the Appearance menu is a checkbox labeled Tee Base. When checked, the signal

bases will use the latter representation. The option selection takes affect

immediately in CATS (i.e. all signals are changed when the option changes), but

only affects signal icons created after it is changed in designer. This difference

in behavior is due to how the icons are created in the two programs.

The first screen capture shows triangle bases and the second shows the inverted

“tee” base.

Figure 15: Signals with Triangular Bases

Finally, intermediate signals appear as a filled in circle on the end of the track

protected by the signal.

Let’s go back to the Details button. When selected, you will see another pop up

window. This one has a tab for each head.

Figure 16: Signals with Tee Bases

Figure 17: Representation of Intermediate Signals

Each head has a list of colors or positions for each of the portions of an aspect

that it is required to present (see 8.1). If the layout electronics can handle that

color or position, pick the JMRI name that describes the device driving the

signal. Then, you can fill in the decoder address that causes the electronics to

show that color or position. The program assumes that the decoder has two

positions – close and throw (or open). If the light is turned off by sending a

command with the opposite position, you should check the “Off Command?”

box. If that box is checked, CATS will send the “other” command to turn the

light off before sending a new command to set the head to a different color. If

the box is not checked, CATS assumes that the next command changes the color

automatically. For example, the “Off Command?” box probably should not be

checked when working with 2 lead, bi-color LEDs. A general rule is that if the

colors have unique addresses, check the “Off Command?” box. The Digitrax

SE8C can show four presentations with two decoder addresses. The “Off

Command?” box should not be checked for an SE8C.

The “off” pane appears if an aspect is defined as “off” (the light is dark) or the

signal has approach lighting or an aspect is “flashing”. If there is a flashing

aspect and your hardware does the flashing, leave the “Software Flashing” box

unchecked (e.g. SE8C). If you want CATS to control the on and off for flashing,

check the “Software Flashing” box. In addition, either the decoder must have an

“off” address (defined in the “off” box) or the light can be turned off by sending

the opposite command as the one that turns the light on (the “Off Command?”

box is checked).

Figure 18: Signal Head Decoder Association

If you do not define a decoder for a particular color or position, then CATS will

not send anything to the layout.

See also Section 14.7 for tips on using JMRI SignalHeads and exposing CATS

SignalHead definitions to JMRI.

To change an icon or decoder definition, just make the changes in the windows.

Be aware that large changes (such as changing the template) may not retain all

the information from the previous setting. So, it is a good idea to have the

decoder information at hand when making changes.

To remove a signal on the CTC panel, uncheck Panel. To remove a signal on the

layout, uncheck Layout Signal Type or change the JMRI name to “none”.

9.2.2 Defining Stations and Depots

Selecting Details->Station brings up a pop up window for placing a depot or

station icon on the dispatcher panel. There is a checkbox labeled Station, a

selection list for where to place the station icon in the grid cell, and a selection list

of color names (see 14.1.1). A station has no affect on operating the dispatcher

panel. It is intended to remind the dispatcher where the depot is located. The

icon appears as a solid box on the dispatcher panel, in the color indicated by the

selection list on the right.

To remove a station, uncheck the Station checkbox.

9.2.3 Giving the Track Section a Name

If you select the Details->Name item, you will see a pop up window that lets you

add a label to the grid cell, which appears in that cell on the dispatcher panel.

This provides the ability to place a name on a siding or station, or territory. The

pop up window has a selection list for where to locate the name in the cell (do not

be concerned if it is clipped by the sides of the cell – it will not be clipped by

CATS), a text field for the name, and a selection list of font names (see 14.1.2).

Figure 19: Station Icon

To remove a name, erase all characters out of the text field.

9.2.4 Adding a Picture

The Details->Picture option brings up a pop up window, which lets you select a

gif image to appear on the dispatcher panel. Check the Select Files check box to

indicate that you want to add a picture (uncheck it to remove a picture). You can

use the browse button to bring up a standard file search window. So, select the

file you want or enter its name directly into the text field. If you use the browse

option, then the full path to the file will be saved in the XML file, which makes

moving the XML file to a different computer a little tricky.

As with track section names, do not be concerned that the image does not fit in a

cell. It can spill over to other cells in CATS.

Why would you want to add an image to the dispatcher panel? You might want to

put the railroad logo on it.

9.3 Defining Switch Points and Turnouts

Details->Define Switch Points pops up the most complicated window in the

designer program. It is used for describing switch points.

Figure 20: Tile Name Definition

Figure 21 Cell Name

Note that the window is split horizontally into a two halves. The top half contains

information that applies to the switch points as a single entity. The bottom half is

tabbed, with a tab window for each route. Even if there is nothing on the layout

corresponding to the switch points, be sure to pay attention to two things. First,

on the top half, there is a spur checkbox. It is used to tell CATS that the

dispatcher has control over the turnout or not. If checked, then the turnout is not

under dispatcher control. If not checked, then the turnout is an OS section and the

dispatcher can close or throw the points. Second, be sure to check the normal

route box in one of the tabbed windows. It should be the window which

describes the “main” route through the turnout. CATS does not work right (it

crashes) if a switch points does not have a normal route checked. Designer

assists in telling you that some switch points are missing a normal route

designation. It will draw the tracks composing the points in the ERROR color

(Section 14.1.1).

Figure 22: Defining Switch Points

9.3.1 Definitions in Common to All Routes

As noted, the top half of the window contains things not specific to a route. There

are four decoder definitions:

1. Turn Locked Light On If there is something on the layout to tell the

switching crew that they do not have local control over the turnout, then

fill in the decoder information. When the dispatcher “locks” the turnout

from local control, then CATS will send a message to the decoder using

the information. If “Off Command?” is checked, CATS will send the

“other” command when the dispatcher unlocks the turnout.

2. Turn Unlocked Light On If there is something on the layout to tell the

switching crew that they have local control over the turnout, then fill in the

decoder information. When the dispatcher “unlocks” the turnout, CATS

will send a message to the decoder using the information. This may

appear to be redundant with the item for turning off the locked light, and

in many cases it is; however, if the locked and unlocked lights are not

controlled by the same decoder, then two commands are needed. CATS

will send both, if they are defined.

3. Turnout Unlocked Report Some model railroads imitate the prototype by

requiring that the local crew unlock the turnout before they can move the

points. If your railroad does this, then this is the message sent by the

decoder to tell the computer that the crew has unlocked the turnout. This

does not do anything in this version of the program.

4. Turnout Locked Report This is used for telling CATS how to identify the

turnout control being restored to the locked position.

9.3.2 Defining Routes

There is one tabbed pane in the bottom of the window for each track segment

selected in Details->Track. It has the Normal Route checkbox and decoder

information about the route. Designer will guarantee that no more than one route

has the Normal Route box checked, but it will not guarantee that one has it

checked, so be sure to check one. Designer will draw any switch points without

a Normal Route box checked in color ERROR.

Let’s digress for a moment into the realm of Turnout feedback. “Turnout

feedback” is the layout reporting to CATS how the points are aligned. There tend

to be three common schemes on model railroads for turnout feedback:

 None. CATS sends a command to the switch machine and assumes that it

works.

 Positive. One alignment has a sensor on it. When the turnout is set to that

route, the sensor reports contact. When the points move out of that route,

the sensor reports loss of contact. CATS will assume that when contact is

reported, the points are in the indicated alignment. CATS will assume

that when contact is not reported, the points are set to the non-

instrumented route. Note that this may not be completely accurate

because if the points could get stuck between routes, CATS will assume

they are in the non-instrumented position.

 Exact. Each route has a sensor on it.

The decoder information is for both sensing the turnout and controlling it.

1. Select Route Request is sensed by CATS. It should be the decoder address

of the switch that the crew uses to request that the computer move the

turnout points to the enclosing route. So, when CATS receives the request

indicated, CATS will look at the layout and determine if the turnout can

be moved to the enclosing route. CATS will look at the lock condition of

the turnout, the occupancy of the block containing the turnout, traffic

reservations through the turnout, the signal discipline on the block, etc.

and if it is safe, CATS will send the commands to move the points. The

source of the request can be a fascia switch wired to a decoder or from a

throttle or either.

Some model railroads are wired with a momentary (non-latching) push

button. The procedure is that the crew moves a knob (which changes the

power routing), then pushes the push button. Thus, the push button is used

in selecting any route and always sends the same decoder address. CATS

understands this situation. If your layout is wired this way, put the same

address in each route. CATS will recognize that the addresses are the

same and set a different route every time it sees one of the decoder

messages.

2. Select Route Command is the message(s) CATS sends to the layout to

move the points to the enclosing route. The Decoder Chain is useful here

for throwing multiple turnouts.

3. Route Selected Report is the decoder information sent by the layout when

the turnout has been moved to the enclosing route. This applies only if

your layout is wired for either “positive or exact position reporting” and

you want CATS to know when the turnout has reached the requested

alignment.

4. Route Unselected Report is the decoder information sent by the layout

when the turnout has moved away from the enclosing route. This applies

only if your layout is wired for “exact position reporting” and you want

CATS to know when the turnout is not in the alignment of the enclosing

route.

You do not need to have decoders for all of this. If you leave out decoder

information CATS will simply ignore it. Here is how the above is

applied:

 No feedback. Leave Route Selected Report and Route Unselected

Report blank.

 Positive feedback. Populate Route Selected Report on each of the

routes. They will probably be the same decoder address, but one entry

will be thrown and the other closed.

 Exact feedback. Populate Route Selected Report and Route Unselected

Report on all routes. The decoder addresses will be probably be

different.

To summarize how turnout position feedback is specified, if only one of

Route Selected Report or Route Unselected Report is defined, then the

turnout position on the dispatcher panel will not change until the report is

received. If both are defined, then the turnout will be in a transition state

when Route Unselected Report is received and completed when Route

Selected Report is received. If neither is defined, then CATS treats the

request to move the turnouts as always happening instantly.

If the layout uses ABS or APB, then at least one of Route Selected Report

or Route Unselected Report should be defined (and the turnout should be

wired for feedback). Without a dispatcher, this is the only way for CATS

to know which way a turnout is set (which is a factor in determining signal

indications).

There is an item under Appearance that affects turnouts. If the Lock Turnout

Decoders checkbox is checked, CATS (this option only applies to CATS) will

remember which turnouts are locked (e.g. occupied or are involved in a route

reservation). It will disallow any turnout to be thrown that will send commands

that will move a locked turnout. For example, it is common for the turnouts on a

crossover to share the same decoder addresses, so that when one moves, the other

moves. This checkbox will prevent that from happening if one of the turnouts is

locked. If your layout does not share decoder addresses, then leave this box

unchecked because CATS will run a little faster.

9.3.2.1 Enforcing Dispatcher Control of Turnouts

As you work out the details of operating the railroad, you will encounter the

question of protocol for who controls a turnout – the dispatcher or the local crew

– and when do they relinquish control. Some situations are easy. Turnouts

defined in designer as spurs are always under the control of the local crew. The

dispatcher has no way to tell CATS to move them. On the prototype, these are

often called manual switches. CATS allows the dispatcher to move points that

are not defined as spurs. On the prototype, these are often called automatic

switches. However, by design or not, the local crew may also have the capability

to move the points as well. For example, CATS sends a message down the

command bus to move the points. The local crew may have the ability to send the

same command via the throttle (cab). Alternatively, the layout may have a button

on the fascia for moving the points under local control, which can be triggered at

any time. Thus, the turnout can have two “owners”, which can lead to confusion,

and the layout will require a protocol for deciding who “owns” the turnout at any

time.

The general rule for automatic switches on the prototype is that “the dispatcher

owns the turnout until granting control to a local crew”. It is often possible for a

local crew to usurp control of a turnout, but such actions are detected and the crew

disciplined. Many layout owners want to emulate the prototype – “the dispatcher

owns the turnout until granting control to a local crew”. However, the

consequences are not as dire if the local crew takes control of a turnout and it is

often much easier to do so. Thus, it is tempting for a local crew to think, “I can

finish my work if I can just cross the main and since nothing is coming, I will set

the points, make my move, and return the points without getting permission from

the dispatcher”. Some layout owners see this as not worth preventing; other

owners see it as not at all in the spirit of simulating the prototype. The rest of this

section is for the benefit of the latter.

There are multiple ways to set up a layout and CATS to prevent local crews from

unauthorized movement of turnouts. They all hinge upon the dispatcher granting

track authority on a block of track.

 Mechanical Lock. When the dispatcher grants track authority, CATS will

turn the Unlocked Light On. In doing so, CATS can send one or more

commands. The recipients of those commands can unlatch a mechanical

lock on the turnout; thus, activating the fascia button. This method relies

on additional hardware to provide the mechanical lock and a decoder that

can be set from the computer to activate and release the lock. It may also

require a fall back mechanism so that the lock can be released when

CATS is not running.

 Software Lock. The layout can be wired so that the fascia button does not

actually move the turnout points, but sends a message to CATS (Select

Route Request). CATS will look at the situation and move the points on

behalf of the local crew, if the dispatcher has granted track authority. This

method requires that the push button be tied into a decoder that can send a

message to CATS. It also mandates that CATS be running to move the

turnout locally.

 Countermand Lock. CATS can be set up (see Section 14.1.15) so that

when it sees a turnout move without authorization to send the command to

move it back. This method requires both feedback (Select Route Report)

and a command (Select Route Command), but nothing additional. It works

on both spur and non-spur turnouts. Depending on the control system and

feedback, the points may move, then immediately move back, which is

disconcerting, but eventually the crew will understand that they really do

not have control of the turnout.

9.3.3 Tracks Revisited – Puzzle Tracks

Puzzle tracks are complicated sets of points that baffle novices (and some

veterans). Double and single slips are the primary examples. This section

discusses how to create crossings, flyovers, double slips and single slips.

The following diagrams illustrate each. The first example is a fly over. The top

track logically connects to the bottom track, even if the drawing does not. It uses

the “not connected to adjacent track” feature described earlier to join the vertical

segments (Section 9). This configuration would be used for the intersection of a

figure 8 or any place a track tunnels under another.

The next diagram illustrates one form of a crossing. The tracks cross each other

at grade, but there is no route from the vertical track to the horizontal and vice

versa.

Figure 23: Flyover

Prior to version 2.01, all the tracks shown are in the same detection block. After

version 2.01, the tracks are in separate detection blocks. Thus, one track could be

CTC and the perpendicular track could be ABS. Furthermore, when a route is set

on one of the tracks, signals protecting the crossing track drop to stop. This is

similar to a turnout being thrown to a fouling position.

Other forms of crossings are the following (grid lines are included to show

Section edges):

Column 1 illustrates a 90° crossing. This is more compact when two parallel

tracks cross than bending tracks as for Figure 24: Crossing. Column 2 illustrates

Figure 24: Crossing

Figure 25 Crossings on Section Edges

a “scissors” or double cross over15. It is column 1 with the parallel tracks

continued. Column 3 illustrates a crossing on an oblique angle.

Just as the first form of crossing is ambiguous, so are crossings on an edge.

Specifically, they look like switch points. To distinguish between crossings and

switch points, designer considers tracks that meet on an edge to form a possible

crossing only if

 There are only two tracks touching on the edge

 Both Sections that touch (halves of the crossing) have only two tracks

 The tracks that touch the edges are complements

(UpperSlash/LowerSlash, UpperBackSlash/LowerBackSlash,

Horizontal/Horizontal, Vertical/Vertical)

Any construction that does not meet those criteria cannot be a crossing.

Nonetheless, the constructs that meet the above criteria could also be switch

points that form a double slip. When designer detects this ambiguity it requests

clarification on the Edge Specification panel (Figure 26 Crossing or Switch Points

Selector Pane).

The quadrant labeled RIGHT illustrates the selector. It has two radio buttons

(Tracks are turnout and Tracks are crossing). Clicking on one activates the

button to the right (Define Switch Points and Define Crossing) and deactivates the

15 Note that a double slip is a very compact scissors.

Figure 26 Crossing or Switch Points Selector Pane

one to the right of the other radio button. Selecting Define Switch Points (the

default) pops up the switch points definition pane (Figure 22: Defining Switch

Points). Selecting Define Crossing pops up the crossing definition pane.

The Describe Cross Over window has 2 buttons. They are labeled with the

Section edge that each of the tracks forming the cross over terminate on.

Checking a box places a block boundary on the crossing edge for that track.

Leaving it unchecked tells designer that the track and its continuation in the

neighbor Section are in the same detection block. Notice that the tracks are

independent. If they are in the same detection block they will either have to share

the same detector or touch in a different Section (for example, column 2 in Figure

25 Crossings on Section Edges).

Block boundaries in crossings are treated differently than block boundaries in

non-crossings:

 No gap is shown

 No signal can be placed on the panel

 No secondary pop up windows for defining the block detector or the signal

information appear

For a “scissors” cross over, typically both tracks will have the Block boxes

checked. That allows trains to pass on the parallel tracks and not interfere with

each other. Some commercial section track is wired with all the tracks in the

same detection block, in which case, the Block boxes will not be checked.

Note: watch out for adjacent crossings, such as below. In this diagram, the

horizontal track crosses two tracks at an angle. The horizontal track is in one

detection block, but the diagonal tracks have block ends at the crossing. The

caution is to ensure that the horizontal track does not have block ends at the

crossings because there is no way to define the block from the crossing. Placing a

block boundary between the two will work.

Figure 27 Crossing

Definition

A double slip is defined as a crossing with 2 parallel routes between the

perpendicular legs. There are multiple ways to draw one:

There is one major problem with columns 1 and 2 in the above diagram. The

dispatcher may mistakenly believe that two trains can go though the double slip

on the parallel routes without colliding. In reality, that is impossible.

Column 3 is a more realistic rendition. CATS can pick all four possible routes,

but this arrangement can easily be mistaken for a crossing, as explained above. In

Figure 28 Multiple Crossings

Figure 29: 3 Double Slips

this case, the Define Switch Points box should be checked in Figure 26 Crossing

or Switch Points Selector Pane.

A single slip is a double slip that is missing one route. Here are three ways to

draw one (in each case, there is no route from A to C):

Columns 1 and 2 are the straight forward construction – a double slip with one

missing route. Column 3 is not an obvious single slip, but with the judicious

selection of commands for setting the points, it can represent one.

Let’s arbitrarily say that route A-C is not supported (consistent with the first two

examples). That means the valid routes are:

A is involved in only one route: A-D. C is involved in only one route: B-C.

Thus, if the dispatcher throws the left hand turnout for A, the right hand turnout

should be thrown for D. Likewise, if the dispatcher throws the right hand turnout

for C, the left hand turnout should be thrown for B. By using a CATS chain or

JMRI Route in the Select Route Command box (Section 9.3.2), this restriction can

be enforced.

Figure 31: Another Single Slip

Figure 32: Possible Routes Through Single Slip

Figure 30: 3 Single Slips

There are more combinations (a diamond, all six possible tracks), but given the

complexity of a double slip, it is doubtful that an example exists in the prototype

in a compact space.

10 Creating Trains
The Train menu item is for creating trains. You do not need to define any trains

using designer because trains can be defined in CATS. However, if you have a

train that is a regular in operating sessions (is not “spur of the moment”), you will

save yourself some repetitive work by defining them in designer.

10.1 Edit Trains

This default menu is used to describe a train.

The Train window can be the lineup for your operating session. Along the right

are four buttons. You use Add Record to create a new train in the lineup. It will

add a new row to the table above the currently selected row. Conversely, Delete

Record(s) will remove the highlighted trains from the table. If you delete a train,

it is not gone (but you cannot do anything with it) until you push the Accept

button. So, if you push Cancel, you will close the window and leave your line up

as it was prior to selecting Train. The other two buttons are used to move the

selected trains up or down in the lineup. If you arrange the rows in the order the

trains are to run, then you have your lineup with the dispatcher panel. The Move

Up and Move Down buttons can assist you in arranging the order to run the trains

in.

The Train table is where the information about the trains is stored. There are 9

columns, containing a field of information about each train.

1. TRAIN_NAME is the common name of the train (for example, California

Zephyr).

Figure 33: Train Edit Pane

2. TRAIN_SYMBOL is an abbreviation for the train. It should be short (only

a few characters) and unique. It is what appears on CATS for marking

where a train is. There may be more than one California Zephyr, but there

should be only one “5” and one “6”. It is also used for requesting

information on a train when used in conjunction with JMRI Operations

(see Section 16 for more details).

3. ENGINE is the lead engine number of the train. As of this release, it only

provides a little additional information about the train, but we have plans

for it. Eventually, we want to tie CATS into the Crandic “power desk” or

JMRI operations (roster), so this is one link. Some of the modern

prototypes label a train on the dispatcher panel by symbol or lead engine

number (see 14.1.7). This field would provide the lead engine string.

4. TRANSPONDING is another future item. It is intended to be checked if

the locomotive supports transponding. If it does, then CATS will use the

transponding information for locating the train on the dispatcher panel. If

this is not checked, then CATS will make “educated” guesses as to where

a train is based on occupancy reports, past history, and dispatcher route

selection.

5. CABOOSE is also a future item. If a caboose has a transponding decoder

in it, then put the decoder address in this field. CATS will use it and

occupancy reports to “connect the dots” (fill in the blocks between the

engine and caboose occupancy reports). This means that the cars in

between do not have to trip detectors. CATS will figure out which blocks

are occupied.

6. CREW is a place holder to fill in where CATS places a crew selection list.

7. ONDUTY is the time the crew went on the job. If you want, CATS will

record the time that the crew went on duty on the train. This can be the

time the dispatcher made the assignment or it can be the time specified

here. Putting a time here can reduce the number of hours the crew has left

to finish the job; thus, simulating the time it took a train to arrive from

“somewhere else” to get to the layout.

8. DEPARTURE is another time field. If you want to remind the dispatcher

when a train is supposed to depart, you put the departure time here.

9. LENGTH is a number used to hold the length of a train. It can be

populated from JMRI Operations.

10. WEIGHT is a number used to hold the weight (tonnage) of a train.

11. FONT is the final field. It is the name of a font (see Section 14.1.2).

CATS does not use it, but the TrainStat application does. If you would

like the TrainStat application to paint some trains differently (for

example, passenger trains are a different color than freights and mixed are

yet a third color; or east bound trains are a different color than west bound;

or through trains are a different color than locals), then this field performs

the task. See section 14.8 for a detailed example of how FONT might be

used.

Now, why did the graphic screenshot above look so different? It has only 5

fields, but 9 are supported. We will discuss how to tailor the presentation of the

trains screen shortly (10.4).

10.2 Save Trains

The Save Trains menu item provides a way of saving just the train information in

a file. Thus, you could create a lineup for one operating session and save it. You

could start fresh (or edit the previous lineup) for a different session and save it.

You could save even and odd day lineups, or AM and PM lineups.

10.3 Load Trains

The Load Trains menu item is the compliment to Save Trains. It is used to read a

lineup into designer. The file read in must have been created by Save Trains.

10.4 Edit Train Fields (or Crew Fields or Job Fields)

This menu item lets you customize the Train screen. It looks like

 This screen should look a lot like the Train screen because it uses a lot of the

same code. This table shows the fields (columns in the Trains screen) a train can

have as rows – one row per field. Each field can have 8 characteristics, which

are the columns of this screen. Another way of saying this is that the train fields

are records in this table and the train field characteristics are fields in this table.

Figure 34 Train Edit Pane

Anyway, let’s look at the buttons on the right, first. Notice that some are grayed

out. They are active, depending upon which and how many rows have been

selected. They allow you to

 Move a group of records up. This changes the order of the train fields on

the Train screen, as they march across the screen.

 Move a group of records down. This pushes their columns on the Train

screen to the right.

 Add a record. This lets you create your own train fields. The record is

created above the top selected record, but if it does not go where you

want, just use the move up and move down button to position it.

 Delete a record. CATS expects that the default fields exist. So, you

cannot delete any of the rows shown here. You can add rows and delete

the ones you create.

Next, let’s look at the characteristics of each train field.

 The “Mandatory” column tells you if you can delete the train field or not.

If mandatory is checked, you cannot delete it. Designer will not let you

check or uncheck anything in this column.

 The “Field Name” column is how CATS identifies the contents of the

field. Designer will not let you change it, either. Fields that CATS needs

have some meaningful name. Fields that you create are “f” and a number.

These names never appear on a screen in CATS, so there really isn’t any

need to customize the names.

 The “Visible” column is a column of checkboxes. If the box in a row is

checked, then the field shows up as a column on the Train screen. If the

box is not checked, then the column does not show up, so this provides a

way to hide things that are not important to your operations. Compare the

rows with the boxes checked above and you will see that they are the same

as columns in the Train screen.

 The “Field Label” column is the string that appears on the top row of the

column for the field on the Train screen. Thus, if it is not customary for

your modeling to call the time at which the clock starts on your crew

“ONDUTY”, you can change the label to what you do call it.

 The “Editable” column tells CATS that the dispatcher can edit the

corresponding column in the Trains screen or prevent the column from

being edited. For example, suppose you do not want the dispatcher to be

able to change the crew assignment on the Trains screen, check the

“Visible” box and uncheck the “Editable” box. Even though the

“Editable” field may be checked, CATS may not save the result. For

example, suppose the TIME_LEFT field on the Crew screen is editable

and the dispatcher changes the value, CATS will recompute the time left,

anyway.

There is a problem in CATS. Suppose you add a new train, how do you

enter data into an editable field? The answer is that all fields in CATS are

editable on new entries, until the changes are accepted. After accepting

the changes, fields with the “Editable” characteristic not checked, cannot

be changed.

 The “Width” column tells CATS how wide to make each column on the

Train screen. I found it tedious to put a number in the width column, look

at the Train screen, adjust the width column, look at the Train screen, etc.

An easier way to do things is take a guess on this screen, then look at the

Train screen. If you drag a column border on the Train screen and push

the “ACCEPT” button, this column will show the column width changes

you made. The width of the table cannot be resized on the Train screen,

so if you need a wider table, make the entries on the width column larger.

 The “Alignment” column is used to position the text string in the column

of the Train screen.

 The “Class” column is used to define what kind of data can be entered into

each field. You cannot change this column on the mandatory rows.

Here are the kinds of data (“Class”) you can select from for the fields you define:

 “Boolean” puts a checkbox in the column.

 “Classpec” puts the same kind of pull down list that you use to select the

class. There is probably no reason to select it.

 “Crewlist” puts a selection list in the column. The list contains all the

names of the crew.

 “Extralist” also puts a selection list in the column, but the names are those

crew members who can be assigned to trains.

 “Integer” puts a number in the column.

 “String” puts a sequence (string) of characters in the column. Be sure to

make the column wide enough to hold the longest message.16 There are

no restrictions on which characters can be used, except they must be

printable. “Enter” is not a printable character.

 “Timespec” puts a String that represents a time in the column. See below

for more details.

 “Trainlist” puts a selection list in the column. The list contains the names

of all trains that have not been tied down or terminated.

 “AlignmentList” tells CATS how to align the field contents (centered, left

justified, or right justified).

 “FontSpec” puts up a selection list in the column. The list contains the

names of the fonts defined at the time the list is created. There is probably

no reason to select it because CATS and TrainStat will do something

about a font only in the FONT field.

Another area for improvement is how data is entered into a cell. Any entries you make

will not be permanent unless you touch the “enter” key. So, if you make a change and it

disappears, it could be for either of two reasons. One is that it does not fit (e.g. entering

“xxx” into a field expecting an integer). Another is if you did not touch “enter” before

moving the cursor to another field.

16 This is an area for improvement because I would like to be able to support more than simple phrases.

What is a “Timespec”? A “Timespec” is a way of specifying time. It can be an absolute

time (number of minutes since midnight), a relative time (number of minutes since some

other time), or the difference between 2 times. Here is how to indicate each:

 Absolute time: “HH:MM”. This pattern specifies the time of day in military (24

hour) format. “00:00” is midnight. “12:00” is noon. Because no day is specified,

the current day is always assumed.

 Relative time: “+HH:MM” or “-HH:MM”. This pattern specifies the number of

hours (less than 24) and minutes (less than 60) since another time. If either of

these appears in the DEPARTURE field, then the time is computed as relative to

the time at which the operating session began. So, “+1:30” is interpreted as an

hour and half after the operating session began. If a fast clock is used, then it is

an hour and a half, fast clock hours. If either of these appears in the ONDUTY

field then it is interpreted as relative to the time in the DEPARTURE field. If the

DEPARTURE field is blank, then it is relative to the time the crew is assigned to

the train. If the DEPARTURE field has an absolute time, then it is relative to that

time. If the DEPARTURE field has a relative time, then the ONDUTY time is

computed by taking the time the operating session begins, adjusting it for the

DEPARTURE time, then adjusting that for the ONDUTY time.

11 Jobs
The Job menu is used to define crew jobs or positions.

11.1 Edit Jobs

The Edit Jobs menu item is used to add, delete, or change a job description. A job

description is any crew position on the railroad to which you would like to record a

person’s name. It is intended to be used for providing a computer record of who

worked what position at each operating session.

CATS recognizes 5 fields:

Figure 35: Job Edit Pane

 JOB_NAME is the name of the job.

 RUNS_TRAIN is a checkbox. If checked, then the crew member is on the

“extra” board and is included on the Crew column of screens that assign crew

to trains.

 CREW_NAME is a selection list from which you can pick one name from

the Crew screen.

 ASSISTANT is also a selection list from which you can pick one name from

the Crew screen. You can use it for things like assistant dispatcher,

conductor on a two person crew, etc.

 FONT is used to create a list of defined fonts (Section 14.1.2). Currently, it

is included only for consistency with the train table because nothing uses it.

11.2 Save Jobs

The Save Jobs menu item is used to save the Jobs information in a separate file.

11.3 Load Jobs

The Load Jobs menu item is used to read in a saved Jobs file. The Jobs file must

have been created by Save Jobs.

11.4 Edit Job Fields

The Edit Job Fields screen is used to customize the Job screen.

It works similarly to the Edit Train Fields screen. So, you can add fields, hide fields,

re-label fields, etc.

The “Assistant” field will used in the future so that two people can be associated

with the same job. For example, one crew member could be an engineer on a train

and another is the conductor. So, when a train is assigned to one, both crew

members would be assigned to the same train.

12 Crew
The Crew menu is used to record who is working the operating session and what

they are doing.

Figure 36: Edit Jobs Columns Pane

12.1 Edit Crews

CATS recognizes 6 fields for each crew member:

 CREW_NAME is the name of the crew member.

 TIME_ON is the time the crew came on duty on the train assignment. This is

usually the ONDUTY field from the Train screen. However, if the crew

replaces someone (i.e. is a relief crew), then it is the time the new crew is

assigned.

 TIME_LEFT is the amount of time left for the crew to work before they go

“dead on the law”. The time is measured using a fast clock (if a fast clock is

being used) or the computer clock. It is computed by taking the current time,

subtracting the TIME_ON value to get the amount of time worked so far.

This is then subtracted from the HOURS time.

 EXPIRES is the time at which the crew has worked the legal hours. This is

computed by adding HOURS to the TIME_ON value.

 TRAIN_ID is a place holder for a selection list containing the trains that have

not completed their runs. These are the trains to which a crew could be

assigned.

 FONT is used to create a list of defined fonts (Section 14.1.2). Currently, it

is included only for consistency with the train table because nothing uses it.

12.2 Save Crews

This menu is used to save the crew list and the formatting to a file.

12.3 Load Crews

This menu is to read a crew list and formatting instructions. The crew list is an

ASCII file (created with a text editor, such as Notepad), one crew name per line.

12.4 Edit Crew Fields

Edit Crew Fields is to customize the presentation of the Crew screen.

Figure 37: Crew Edit Pane

Figure 38: Edit Crew Columns Pane

It works similar to the Edit Train Fields screen. One note about the TIME_ON field.

It is set to the time that the crew is assigned to a train. If the EDITABLE box is

checked, then the dispatcher (and TrainStat) can change it. If the EDITABLE box is

not checked, then the dispatcher (and TrainStat) cannot change it. Thus, if a crew is

assigned to a train in the CATS Edit Crew pop-up window, TIME_ON will be set

when the assignment is made.

12.5 Legal Hours

The Legal Hours screen is used to specify how long (in hours and minutes – hh:mm)

a crew can legally work before they must be relieved. The hours should be in the

time base (fast clock or computer time) used for the operating session.

13 Common Operations
This section discusses some checkboxes and entry fields used in multiple windows.

13.1 Defining Decoder Addresses

This can be the most difficult part of creating a dispatcher panel because it is not part

of railroading. It is also one of the most difficult parts to explain because there are so

many ways to connect a computer to a model railroad (Xpressnet, Loconet, C/MRI,

etc); so many different kinds of connection devices (SwitchIts, SE8Cs, etc); and there

are also many ways to use the devices to control things on the layout. Yet, it may be

the most important part because this is where CATS meets the layout.

Many designer windows require decoder information. For example,

Figure 39: Legal Hours

Figure 40: Decoder Specification

They have a panel containing a pull down list of JMRI names (e.g. Select Route

Command) which is used to tell CATS that there is a decoder and how to use it. The

pull down list is used for describing the way the detector is connected to your

computer. It follows the JMRI naming convention. Your choices are the ones

checked on the JMRI Device window (Section 8.3).

The address field is where you enter the “address” of the device. This is the address

of the layout element on the connection. For example, the SE8C can control 8

security elements and has a board id. The board id is not the address. The board id is

used to compute the address of each signal head, of each turnout control, of each

sensor message, and of each push button message. This field, too, follows the JMRI

naming convention.

 Finally, the last buttons provide the “sense” or “polarity” of the report or command.

This will depend upon how your decoders are wired and if you don’t know how they

are wired, just pick one and try it. You can always come back to this screen and

change it. You can also run something like a Loconet monitor, make a change with a

throttle and by looking at the monitor and the layout, deduce which radio button is

correct. For defining SignalHeads only, see also section 14.7.

The discussion of naming decoders brings up a rather subtle topic. CATS breaks

from JMRI in that CATS makes no assumptions about the relationships between

decoder addresses. For example, JMRI defines internally, what an SE8C is and how

it is wired to the layout (which addresses are used for controlling the A1 head, for the

A2 head, for the B head, and for the C head). CATS would prefer to treat an SE8C as

simply a bunch of Loconet addresses, similar to a LocoIO. In fact, CATS does not

know what is at those addresses – SE8C, LocoIO, DS-54, and so on. This gives you

flexibility in wiring your layout and you tell CATS how you wired it up, rather than

you following a set of wiring rules. This simplified the design of designer and

CATS and made them adaptable with many decoder vendors. However, the price

paid is that CATS does not utilize some of the logic in JMRI and the user has to enter

many decoder addresses. An even more subtle effect could be that you use a device

that enforces a relationship and CATS does not know about that relationship. For

example, the SE8C and DS-54 can be programmed for independent operation (when

track occupancy is sensed, signals are set a particular way). This independent action

could interfere with what CATS is doing. Watch out for those kinds of devices. You

should not avoid them, just be aware that they may do things that you did not intend

and you may have to change some of their option settings. Also, CATS conflicts

with how JMRI handles turnouts. JMRI maintains the state of a turnout internally.

CATS also needs the state of the turnout for checking for fouling points.

In general, select an entry from the selection list in 8.3 whose second letter is ‘S’ or

‘T’ (however, Loconet users need to read Section 8.3 carefully). The first letter will

depend on how the computer attaches to the layout. Because Loconet uses different

messages for what the layout reports and for controlling the layout, this advice does

not apply to Loconet connections.

13.2 Positioning Something in a Grid Cell

Another common menu in designer is a selection list of where to place something in

a grid cell. There are selections like “upcent”, “leftupper”, and so on. What these do

is provide some fine adjustment on locating an item. Each selection (except for

“center”) is made from two directions. The first is the edge of the cell and the second

is where along the edge. For example, when placing a signal in “upcent”, the signal

will appear along the top edge with roughly equal empty space on its left and right.

“upleft” means it will be placed on the upper edge, biased to the left. This placement

is very close to “leftup”, except for “leftup”, the signal will be against the left edge,

biased towards the upper edge. So, in contrast, it will be higher with “upleft” and

closer to the left edge with “leftup”.

This really gets interesting with items that are wider then the cell. Things can spill

over the right edge (“left” in the selection), spill over the left edge (“right” in the

selection), or spill over both edges (“center” in the selection). But in any case, if it is

not where you want it, try another selection.

Because train labels move above the track line, position names and signals below the

track line, if convenient.

14 Fine Tuning the Presentation
This section is intended to be a set of application notes and hints on how to wire your

railroad and set up CATS for prototypical operation.

14.1 Appearance

The Appearance Menu has some menu items that can be used to change the way the

dispatcher panel looks. Any changes to these are stored in the XML file for CATS.

14.1.1 Colors

The Colors menu item is used to select a color from a palette of 256 colors, for the

color in which things are painted in CATS. Actually, by using a different tab, you

can select any color supported by Java.

All colors must have names because CATS uses the name to find the color. This

sounds like it is taking the long way to get somewhere. However, it is based on the

observation that with only a few exceptions, if a color is used once (for example, in a

station), it is used multiple times. The things being colored are related to each other

in some way. Thus, if the color of one thing is changed, most likely, all of its

relatives should be changed identically.

The color table looks like the following:

There is one row for each named color. The name of the color is in the left column.

The right column is a button that will present a color editor. That color editor

depends on the Java user interface running on your computer.

CATS requires the following named colors. You can define more with the Add

button, but you cannot delete any of these.

 Block Occupied is the color used to paint a section of track which is occupied.

 Block Empty is the color used to paint a section of track which is not

occupied, reserved, out of service, or involved in track authority. This color is

also used to paint signal icons under the dispatcher’s direct control that are not

involved in an authorized train movement.

 Block Reserved is the color used to paint a section of track which has been

reserved for a train movement.

 Block OOS is the color used to paint a section of track which has been taken

out of service by the dispatcher.

Figure 41 Color Table

 Track Authority is the color used to paint a section of track which the

dispatcher has given to a train for local work (track authority)

 DTC Trail is the color used to paint a section of track which is under DTC,

was reserved for a train, was occupied, and then unoccupied. It designates the

track as idle, but within the limits of some track permission.

 Dark is the color used to paint track which has no train detection.

 Depot is the color used to paint the square icons that represent the location of

depots.

 Idle Aspect is the color used to paint a signal icon on the panel that is not

involved in a route or protecting ABS or APB blocks. On the older Digicon

panels, this was white. On newer panels, it is red.

 Stop Aspect is the color used to paint signal icons which are not under the

dispatcher’s direct control (i.e. ABS and APB) or are involved in an

authorized train movement showing a Stop indication.

 Approach Aspect is the color used to paint signal icons which are not under

the dispatcher’s direct control or are involved in an authorized train movement

showing that the train can proceed, but must stop at the next signal.

 Clear Aspect is the color used to paint signal icons which are not under the

dispatcher’s direct control or are involved in an authorized train movement

showing that the train can proceed.

 No Physical Signal is the color to paint signal icons which are under the

dispatcher’s direct control, not involved in a train movement, but do not have

a visible signal on the layout. This is a reminder to the dispatcher that the

train crew does not know what aspect the signal is showing.

 Background is the color of the canvas the dispatcher panel is painted on.

 Error is the color used for drawing track that will give CATS problems

(Sections 6 and 9.3).

14.1.2 Fonts

This menu changes the way train names and track labels are shown. The size, color,

and the highlighting (normal, bold, italic) of each font can be changed.

All fonts must have names because CATS uses the name to find the font. Similar to

colors, this sounds like it is taking the long way to get somewhere. However, it is

based on the observation that with only a few exceptions, if a font is used once (for

example, in identifying a station), it is used multiple times. The things being labeled

are related to each other in some way. Thus, if the font of one thing is changed, most

likely, all of its relatives should be changed identically.

The font table looks like

The first column is the name of the font. The second column is a button used for

selecting the color of the font. Just click on it and a color edit pane (dependent on the

Java user interface) will be presented. The third column sets the size of the letters.

The fourth column provides emphasis to the letters – PLAIN (none), ITALICS

(slanted), BOLD (wide lines), and BOLD-ITALIC (slanted, wide lines).

CATS requires the following named fonts. You can define more with the Add button,

but you cannot delete any of these.

 Grid Labels is the default font used by the Section Name operation (Section

9.2.3)

 Train Identities is the default font. It ensures that if a name is deleted that

CATS will have a font that it can use.

 On Call Train is the font used for trains that have not been run and are

awaiting a crew.

Figure 42 Font Table

 Active Train is the font used for trains that have crew assigned and are not

selected for movement through the cursor keys.

 Selected Train is the font used for the train that has assigned crew and can be

moved by the cursor keys.

 Tied Down Train is the font used for trains that have completed their work

and been tied down.

14.1.3 Line Widths

The Line Widths menu is used to change the width of lines. Horizontal and vertical

lines have the same width. The two forms of diagonal lines have the same width.

14.1.4 Grid Size

The Grid Size menu is used to change the horizontal and vertical dimensions of the

grids. Usually, the best appearance is when they are the same. The grid size option

has been disabled because CATS assumes the default size in several places and

things are not painted correctly if the grid size is changed.

14.1.5 Adjustments

Adjustments are counters and delays, used to fine tune the interface to the layout.

14.1.5.1 Occupancy Debounce

When we first installed CATS, we ran into some false detection issues. We saw

quick, random phantom detections where a block with no train in it would flash

occupied for less than a few seconds, then return unoccupied. We eventually chased

these phantoms down to “silent drive” locomotive decoders tripping Digitrax BDL-

162 decoders. In an effort to eliminate these phantoms, I added an occupancy filter.

The way it works is that a block must be occupied for at least as long as the value

specified before CATS accepts it as a real occupancy report. Typically, real

detections would last at least four seconds (this appears to be a characteristic of the

detectors), so setting it for more runs the risk of losing real detections. Setting it for

less shortens the amount of time the block is marked as detected by the amount of the

debounce interval. You can change this setting on the fly in CATS.

14.1.5.2 Refresh Delay

When CATS loads a layout description or the dispatcher refreshes the layout, CATS

will send a flood of commands to the decoders on the layout. This flood may

overwhelm the command bus and connection hardware. Setting this value to non-

zero means that CATS will send 10 commands, then wait for the number of

milliseconds specified before sending the next 10. You can change this setting on the

fly in CATS.

14.1.5.3 Loconet Governor

This adjustment applies to only devices from the MS, ML, and MR (see 8.3) classes.

We found that it is easy to saturate Loconet with commands. By setting this value,

CATS will wait for the number of milliseconds specified between commands. You

can change this setting on the fly in CATS.

14.1.6 Fast Clock

Fast Clock is a check box. When it is checked, the time stamp on all train movements

is taken from the fast clock (if the layout does not provide one, JMRI will). When it

is not checked, all time stamps are taken from the computer clock.

14.1.7 Engine Label

Engine Label is a checkbox. When checked, CATS will use the lead engine number

as the train label. If there is no lead engine number, CATS will use the train symbol.

If not checked, CATS will use the train symbol. You can change this setting on the

fly in CATS. This checkbox just sets the initial value.

14.1.8 Include File

One of the powerful features of JMRI is that Jython and other scripts can be used to

sense and control decoders. For example, you can create a set of signals with Panel

Pro and run scripts containing your own custom logic to set the signals. If you have

decoders defined through Panel Pro, you can import those definitions into CATS

every time CATS starts without having to load them by hand. To enable this, simply

click on this box and select the name of the Panel Pro configuration file.

To erase a file, enter the name of a file that does not exist.

14.1.9 Flash Rate

As noted above, CATS can flash signal lights. This menu lets you select the flash

rate (in milliseconds) for the on and off phases.

14.1.10 Tee Base

This checkbox selects the way that a base of a signal icon is drawn. The default (not

checked) is as a triangle. When checked, it is an inverted tee. See section 9.2.1 for

more details.

14.1.11 Direction Arrow

This checkbox selects how routes are drawn in CATS. The default (checked) is for

each route to have an arrow head showing the direction the train is expected to exit

the block. When not checked, no arrowheads are drawn. This option does not affect

designer. It is here so that it can be included in the layout description file, saving the

operator from an extra step when starting CATS.

14.1.12 Compress Screen

This checkbox selects how CATS handles columns with only horizontal track. The

default (checked) is for CATS to try to squeeze the screen horizontally. When not

checked, all columns are the same width. See section 6 for more details.

14.1.13 Automatic Wrapping

This checkbox selects how CATS determines when to stop painting tracks on a row

and move to the next row. The default (checked) is for CATS to try to break the row

at a place where the fewest tracks connect to the next row. When not checked, CATS

will run the row up to the edge of the window. See section 6 for more details.

You can force a specific geometry by drawing the screen exactly as you want it in

designer (not as one linear track), making connections using the non-adjacent track

option (see Section 6), and specifying the screen dimensions (Section 14.1.16).

14.1.14 Lock Turnout Decoders

This checkbox selects how CATS decides if it is safe to allow the dispatcher to throw

a turnout or not. The default (not checked) is that CATS ignores decoder commands

in determining safety (because it takes time to make the extra check and many layouts

do not share decoder addresses). When checked, CATS will remember which

commands would move a locked turnout and disallows any turnout from being

thrown that would send one of those commands. See section 9.3.2 for more details.

14.1.15 Reverse Local Operations

This checkbox enforces dispatcher control of turnouts (see Section 9.3.2.1). When it

is checked, CATS watches for switch points moving, when not under track authority.

When they move, CATS will send the command to move them back.

14.1.16 Screen Size

Selecting this menu item pops up a pane that allows you to specify where on the

computer monitor the CATS window should be placed. It also lets you specify the

size of the window. The way to use it is start up CATS and load your layout

description. Then, position and resize the window. If you look at the Java console,

you will see the position and size of the window, every time you adjust its size. You

can note those numbers and enter them into the pane popped up by Screen Size.

14.1.17 Keyboard Shortcuts

Consistent with the way Windows and Microsoft programs do things, some of the

drop down menu items have keyboard shortcuts. They are listed on the drop downs,

next to the item title. Here is a summary of them.

Control c Copy the grid tiles to the clipboard

Control e Bring up the track Ends pane

Control n Clear the canvas for a New panel

Control o Open a file

Control r Add a new Row below the current row

Control s Save the layout

Control t Bring up the Track selection pane

Control v Paste the clipboard at the cursor location

Control x Clear the tiles selected

Control y Add a column to the left of the current column

Control z Undo the last command

14.2 Where to Create Blocks

There is a temptation to scrimp on adding block detectors because they involve more

wires; they are expensive; and they require cutting gaps in the tracks. The questions

you should be asking yourself are “where do I want operations to go in parallel?

Where do I want to allow two trains to operate independently?” As a general rule,

each passing siding should have a minimum of 4 blocks: the main, the siding, and

each turnout (OS section). If the siding has a continuation track to something like a

spur, then the OS section is essentially a cross over. For example,

The diagram has seven blocks (moving from left to right): the right bound approach,

the OS section on the left, the main, the siding, an upper OS on the right, a lower OS

on the right, and a left bound approach. Let’s compare the left and right OS sections.

On the left, if a train is working the upper spur, then the OS section is occupied.

Therefore, the mainline signals protecting it will show red and the main is blocked so

nothing can go through, even though the working train is not actually interfering. On

the right, the dispatcher can grant “track authority” on the upper OS block and as long

Figure 43: Example 1 - Block Placement

as the lower turnout is set for normal, the crew can work the spur without blocking

the main. An alternative way of presenting the above is

which is not pretty. Often what is really intended is

14.3 Yard Entrances

Often, yard entrances are a variation of the above:

Figure 44: Example 2 – Block Placement

Figure 45: Example 3 – Block Placement

where the double headed signal identifies the mainline on the bottom and the yard

drill track is the track on the upper left. In the above, the yard limit is the middle of

the cross over track. The reason for the block boundary on the crossover is to solve

the problem of who “owns” the cross over. Often the first inclination is to wire the

turnouts in lock step (we did this). They are both set for the normal route or both set

for the cross over. Though this arrangement provides a degree of safety, it

complicates operations. If the dispatcher has control of the cross over, then the

dispatcher could interfere with switching in the yard by just setting a route into the

yard. Furthermore, when the yard work occupies the normal route through the upper

turnout, the lower route is also occupied. If the yard controls the cross over, then the

dispatcher must wait for the yard to align the crossover before setting a route into the

yard. Again, this requires considerable coordination.

A workable solution is to control the turnouts independently, define the blocks on the

mainline as CTC, define the blocks in the yard as ABS, add turnout position feedback

in the yard turnout, and let CATS provide the security. The upper signal is the “exit”

signal.

1. The dispatcher sets the mainline for the thru route. The mainline signal

operates independently of yard activity. If the yard is also set for the through

route, then the yard exit signal will reflect the activity on the left.

2. The dispatcher sets the mainline turnout for the cross over, but the yard is set

for the through route. The dispatcher can set a reservation into the yard from

the left, but the signal will show stop, because the route is fouled. So, the

dispatcher can set things up and work on other tasks. If the intent is to send a

train out of the yard, then the signal in the yard will reflect conditions to the

left. But, the crew will be in contact with the yard crew and should be told

when they can leave.

Figure 46: Yard Entrance

3. The yard aligns the yard turnout for the crossover, but the main is set for the

through route. The “exit” signal will show stop because the track is fouled.

4. Both routes are set for the crossover. If the dispatcher sets a reservation into

the yard, the “exit” signal will show red and the double headed signal will be

“approach” because the train is leaving CTC territory. If the dispatcher is

setting up an exit from the yard, the “exit” signal will show “clear” (the next

block is set up) or “approach” (the next block is not set up).

Thus, an action is required by both the dispatcher and yard crew to allow a train to

move into or out of the yard and the actions need not be synchronized.

14.4 Placement of Decorations

Train labels usually move along the topside of tracks. Therefore, it is more legible to

place the signals below the tracks. Plus, this tends to be more consistent with the look

of the prototype panels (probably for the same reason). See the above diagram

(Figure 45) for an example.

14.5 Turnout Position Reports (Feedback)

CATS can handle no position reports, reports on one route (of a two leg turnout), or

reports on all routes (see 9.3.2). Having sensors on all routes is best, but a sensor on

one route is better than none. If the layout uses a single microswitch or feedback

sensor to report turnout position, CATS works best by filling in the “Route Selected

Report” panes on the routes on the Points window. It might seem to make more sense

to fill in the “Route Selected Report” and “Route Unselected Report” panes on the

same route, but the first pane tells CATS when the points are aligned to a particular

route and the second pane tells CATS when they are not aligned for that route.

However, not being aligned for a route does not mean the points are aligned for a

different route because the points could be somewhere in between the two (which is

why sensors on all routes is best).

14.6 Diode Matrices

Suppose you have a yard throat, such as a multi-track staging yard, and you want to

set all the turnouts for any one track with just one click. Historically, model

railroaders have used diodes to achieve this. There are several ways to set this up:

1. Use the route capabilities of a stationary decoder (such as a Digitrax DS-54)

2. Set up a route in your command station (if it supports routes)

3. Use a JMRI Route object

4. Use a single CATS Chain

5. Use linked CATS Chains.

This section will illustrate the latter.

The basic concept is to define a CATS Chain for each track. Each Chain is

composed of at least two elements (more elements may be required, depending on the

turnouts). One element in each Chain aligns the turnout for the attached track. The

other element can be either the Chain definition of the Chain for the preceding turnout

or a dummy decoder (such as a JMRI Memory object). If the latter, in the definition

window for the turnout preceding the one being defined, set the “Select Route

Request” pane to be the same as the dummy decoder. Thus, when the dispatcher

selects a track in the yard, CATS sends a command to each decoder listed in the

Chain. One command will be to the decoder that controls the turnout. Another

command will be sent to the dummy decoder. Nothing will happen immediately

except a request will be sent to the preceding turnout to set itself for the requested

alignment. If it is safe to do so, CATS will execute the preceding Chain (or

command its decoder). Note that the safety checking makes this scheme safer (e.g. if

a decoder is in an occupied block, the command will be ignored) than simply

throwing turnouts. However, the command ends with the first unsafe action or

turnout that is aligned correctly. Consequently, it is more reliable to make the second

element the Chain identity of the preceding turnout.

It is tempting to use the same technique on a crossover from one track to another (two

turnouts are involved). However, you may be surprised at the results if an element in

each Chain refers to a decoder that the other turnout is listening to. What will happen

is that one Chain will stimulate the second, which will stimulate the first, which will

stimulate the second, ad infinitum. Eventually, Java will crash. So, do not do this.

Rather, create a Chain containing all the decoders and assign it to the common leg of

both turnouts.

Here is an example of how to simulate a diode matrix. The tracks are numbered.

Here are sample decoder definitions:

Track Left Route Top Route

1 Throw ML1 Close IC1

2 Close IC2 Close IC3

3 Close IC4 Close IC5

Table 7: Diode Matirx – Decoder Commands

Here are the Chain definitions:

Chain Elements

IC1 Close ML1

IC2 Throw ML2, Close IC1

Figure 47: Example – Diode Matrix

IC3 Close ML2, Close IC1

IC4 Throw ML3, Close IC3

IC5 Close ML3, Close IC3

Table 8: Diode Matrix – CATS Decoder Chains

Should the address of any of the decoders attached to any of the three turnouts

change, only two changes need be made in the decoder definitions.

14.7 Defining Signal Heads

There are multiple ways to drive signal lights, multiple ways to wire them up, and

multiple ways to define them in designer. designer leverages the JMRI SignalHead

abstraction for controlling signal lights17. This means that SignalHeads can be defined in

JMRI (Tools->Tables->Signals):

17 Though designer treats signal semaphores similar to signal lights, the JMRI SignalHead abstraction for

the Digitrax SE8C does not. Thus, if using an SE8C to control a semaphore, define the blade positions in

designer.

The User Name field of the JMRI Signal Head can be placed in the User Name field of

the designer definition (above the Cancel button):

Conversely, all SignalHeads defined through designer will appear in the JMRI Signal

table when CATS runs and the CATS panel loads. Thus, JMRI scripts and Logix can

access CATS SignalHeads. If you wish to do this, you should put the User Name that

JMRI will use in the User Name field of the designer Signal Head definition.

Section 13.1 describes the window panes for entering decoder information. Signal

color/position panes have an additional option.

Figure 48: Using JMRI SignalHeads with CATS

The checkbox (Off Command?) is checked for decoders that need to be turned off when

changing their appearance. For example, lights on an SE8C are mutually exclusive. If a

head with the green light lit is turned to red, the SE8C automatically turns off the green,

so the Off Command? box should not be checked. If each color on a head is driven by a

different output line on a LocoIO, then Off Command? should be checked, so that CATS

can turn off the current light before turning on the new light. When CATS wants to

activate the output, it will send the appropriate command with the chosen polarity. When

CATS wants to change the controlled layout element, it will first look at Off Command?.

If checked, CATS will first send a command with the polarity not chosen, and then send

a different command to set the new state.

This all means that SignalHeads can be defined in designer or in JMRI and referenced in

the other. Here are some guidelines for where to define something:

 If the SignalHead is wired according to the instruction book for the decoder, as

JMRI assumes, then the simplest way is to define it in Panel Pro, save the Signal

table configuration, and import it into designer (see 14.1.8). You will save

yourself some effort in filling in all the decoder definition fields because you will

enter only the JMRI user name into designer once. CATS will then use the JMRI

routines for controlling the signal.

 If the decoder can not be addressed as individual binary outputs (e.g. Grapevine),

it will be easiest to define it in Panel Pro and use the User Name in designer (as

above).

 Alternatively, you could define it in Panel Pro, define some internal turnouts (IT)

in Panel Pro, and some Logix. The internal turnouts would appear in the designer

color definitions and the Logix would translate the IT events to SignalHead

events.

 If the decoder has addressable binary outputs, but the signal is not wired

according to instructions (e.g. the red and green leads were interchanged, or you

want red instead of dark), the colors should be defined in designer. Defining the

decoder definitions in designer is more data entry, but means that the panel

configuration file is self-contained. This is handy for backing up your panel. It

also means that anyone who does not know how to create SignalHeads with Panel

Pro does not need to learn (though the process is simple).

 If the decoder has addressable binary outputs (e.g. CMRI) and you are having

multiple lights in a head lit simultaneously (particularly after first starting up), it is

Figure 49: Signal Decoder Pane

possible to treat them as mutually exclusive. A technique to use is to leverage on

JMRI Routes or CATS Chains. For each color in a SignalHead, define a Route or

Chain. The Route or Chain will turn on one color and turn off the others. For

example, the green Route or Chain would turn off yellow and red and turn on

green. If you use this technique, you can uncheck the Off Command? box. If you

let CATS create the flashing aspect, the dark or off aspect should turn all the

colors off.

14.8 Selecting Train Font Colors or Size

Suppose you use the TrainStat application and you want certain trains to look different

from other trains (see Section 10.1 for possible reasons), here is what you might do. For

the sake of illustration, let’s assume that a classification yard uses TrainStat so the yard

master can monitor what trains are coming his way. It would be nice if the trains that

stop are shown differently in TrainStat than the trains that do not stop. The steps for

configuring the trains are:

 First, you will need to define some fonts, so click on Appearance->Fonts … That

will bring up the font editing window (Section 14.1.2). You will create a new

font for each class of train. For example,

In this example, the fonts are named through and stops. The actual colors, sizes,

and emphasis are unimportant because they are never used. See below for an

explanation as to why they are never used.

 Selecting Train->Edit Train Fields will pop up a window (Section 10.4). To

change the font on a train, it is necessary to make the FONT checkbox visible, so

check the Visible column in the row containing FONT and click on ACCEPT.

 Select Train->Edit Trains to pop up the window that describes each train. For

example, the following defines two through trains and one that stops. The

through trains use the font named through and the one that stops uses the font

named stops.

 This step is optional. If trains are not added during the operating session, again

select Train->Edit Train Fields and uncheck the Visible box on FONT so that it

does not appear. Hiding the column on the CATS train screen removes some

clutter from the screen (plus if it is hidden, it cannot be changed).

The way things work is that CATS will send the information describing a train to the

TrainStat application when the network connection is made. CATS does not send the

Figure 50 Creating Train Fonts

font information, only the font name. The reason is that the TrainStat application

controls the presentation of the information, including the font. Thus, there should be

font definitions for through and stops entered independently into TrainStat. The reason

behind this round about way of doing things is that the original request for TrainStat was

for a railroad with two yards and the owner wanted the trains that stopped in each yard

highlighted for the respective yard masters. In other words, the trains that stopped in

yard A might be identified as a bold red and those that did not stop might be a plain

white. The same would apply for yard B. The problem is that some trains (not all)

stopped in both yards and some stopped in neither. Consequently, that railroad has four

train fonts (based on where the trains stop) and the TrainStat applications have different

definitions of the four fonts.

15 Networking
As originally designed, CATS (and designer for creating dispatcher panels) was a stand

alone program. In addition to routing trains, the dispatcher performed many of the

administrative tasks, such as crew assignments. This model works on small to medium

size layouts, but falls a part on larger layouts where the dispatcher is too busy and a crew

position exists for Traffic Management. With Version 2.04 of designer, support has been

added for defining an IP network connection. Another application in the CATS suite

(Train Status Client) can run on a different computer networked to the CATS computer

(or it can run on the CATS computer). The Train Status Client application listens to

CATS for changes in a train’s status and shows them. With Version 2.32 of designer,

support has been added for working with JMRI Operations. Operations can be running

on a different computer, so the support requires the ability to configure the networking to

the other computer. The Network pull down menu is used to configure both network

connections. By default neither is configured, so if there is no Train Status Client

application running during an operating session or CATS is not getting information from

Operations, the Network menu item can be ignored.

This pull down menu is only for the CATS. designer does not use a network connection.

 The drop down box has three fields:

 Server Port

 Start TrainStat Server

 Operations

15.1 ServerPort

The Server Port box provides a place for entering an IP port number. This is the port that

CATS will listen for connections from Train Status Clients on. If left blank, it defaults

to 54321. It should be changed if the CATS computer has a conflicting application using

that port.

15.2 Start TrainStat Server

Start TrainStat Server is a checkbox. When checked, CATS will enable status reporting

when the CTC panel is loaded. If no Train Status Client is used during an operating

session, this box should remain unchecked. Warning: if this box is checked and the

CATS computer has network troubles (or no network), CATS will hesitate for a lengthy

period of when the CTC panel is loaded.

15.3 Operations

Clicking on Operations spawns another window for filling in the information on how

CATS contacts the computer running Operations (which can be the same CATS).

If JMRI Operations is running on another computer and you know its network name,

insert the name into the top field. If JMRI Operations is running on another computer

and you know its IP address, put the IP address in the second field. Finally, if Operations

is running on the same computer as CATS, simply leave the two top fields blank.

Operations uses the Simple JMRI Server for receiving requests from CATS. The Simple

JMRI Server normally uses port 2048; however, it can use a different port (e.g. there is a

conflict with another program). If it is moved on the Operations computer, the

“Operations port:” field can be used to tell CATS what port the Simple JMRI Server is

using. Usually, you can leave this field blank.

Similarly, CATS will typically use port 51431 for contacting the Simple JMRI Server. If

this results in a conflict with another program, you can put a different value in the “Local

Port:” field. Usually, you can leave this field blank.

If you want CATS to contact the Simple JMRI Server on startup, check the last box.

16 Working with JMRI Operations
With JMRI Release 2.14, CATS has some limited capabilities for working with JMRI

Operations (car routing). Specifically, CATS can tell Operations when a train has

entered a CATS “Station” (Operations “Location”). Operations can then adjust the

train’s manifest to account for any switching scheduled for that train at that Location.

Furthermore, CATS can query Operations for the train’s length at any time. The results

Figure 51 Operations Configuration

of the query will update the train’s LENGTH field in CATS and be forwarded to Train

Status. Thus, the dispatcher has a real time view of how long a train is.

Operations can be running under JMRI on a different, networked, computer or it can be

running on the JMRI that CATS is using. In the former case, you will need to supply the

specifics on how CATS can reach the other computer (see Section 15.3, which can be

provided to CATS during the operating session). Alternatively, the default is that CATS

will look for Operations in the JMRI instance that CATS is using; thus, the network

connection is to itself.

None of this capability comes for free. Some things must be configured. An earlier

Section discussed how to set up the network. CATS and Operations must agree on how

Locations and trains are named.

Both JMRI Operations nd CATS are evolving towards more exchange of information. In

the 2.99+ releases of JMRI, CATS can ask for a train’s weight and number of cars, as

well as length. The responses are used to populate the LENGTH, WEIGHT, and CARS

fields in the train table. The astute reader will notices that with Operations enabled, those

fields should not be changed by the dispatcher or an person running Train Status

because they will be later changed through Operations.

In the 2.14 release of JMRI every train in the CATS train table should be in Operations

because due to a bug in Operations, Operations will crash if CATS asks for an unknown

train.

16.1 Stations and Location

CATS can designate places on the layout by using the Station field of a Detection Block:

If the Station has an equivalent Location in Operations, then the value of the Station field

should be identical to the value of a Name in the Locations screen in Operations:

Figure 52 Station Field

A Station need not have a corresponding Location. If it does not, the train length will not

change when a train arrives at that Station.

16.2 Train Symbols and Train Names

In CATS, the train Symbol is used to uniquely identify a train.

In Operations, the train is identified by its name:

Figure 53 Operations Locations

Figure 54 Train Symbol

Note that in Operations, a train’s name may be composed of its symbol and a locomotive

number. Use only the symbol in CATS.

16.3 Setting Up Operations

JMRI will need to be configured so that the Simple JMRI Server is launched at startup:

This screen is found from Edit->Preferences.

17 Troubleshooting

I wish that I could say that designer operated perfectly and has no bugs. I cannot. It is

over 30,000 lines of Java code and not everything that can be done with it has been

tested. Pasting is a particularly fruitful area to not work right because the block of tiles

Figure 55 Operations Trains

Figure 56 Simple JMRI Server

being pasted has multiple edges and each edge must force a match with its neighbor in

the existing layout. Nonetheless, here are a few tips on troubleshooting problems.

17.1 The Disappearing Window

Many users create a shortcut and icon to the .bat or .csh file that spawns designer and put

it on the desktop, providing “one click launching”. The problem is that the “one click”

creates a command window, designer has trouble starting up, dumps some messages to

the Java console, dies, and the command window disappears. All of this happens so

quickly that you cannot see what the trouble is. The solution is to run the startup script

(.bat or .csh file) by hand. Depending on your operating system, launch a command

window. Under Windows, this is performed by Start->Run. Then “change directory” to

where the startup script is located. Under Windows, the command is usually “cd

C:\Program Files\JMRI”. Then run designer. Again, under Windows, type “designer”.

17.2 Warnings and Error Messages

Assuming the Java console window does not disappear, it could contain pleas for help

from designer. So, if things seem to quit working, look at the Java console.

Do not be alarmed if a message pops up when loading an older layout description telling

you under what version of designer it was created. As features are added to and changed

in designer, efforts are made to allow the new versions to read in descriptions created by

older versions. This is called backwards compatibility. However, sometimes it is not

possible for a particular version to read in any description created by any earlier version.

Because the amount of testing grows arithmetically with every new release, backwards

compatibility is often not tested with descriptions. So, that message can provide some

idea of how old the description is that is being updated.

It is usually impossible for older versions of designer to read in descriptions created by

newer versions. If I had that kind of foresight, I would make a killing in the stock

market.

17.3 Java Logging

The debug philosophy for designer has been evolving over time. The Java console is

used for most warnings and error reports, but I am increasing the use of the log4j

facilities. The file named “default.lcf” contains a filter on the kinds of messages that will

be written and where they will be written. The location of this file depends on the

operating system. It is usually in the same directory as the JMRI roster and configuration

files.

17.4 Signals Are not Working Right

You have your layout wired. You tested all the signals with a throttle (or Panel Pro).

They can display all the desired aspects with DCC commands. You launch CATS and

some signals do not look correct. The reason could be a bug in CATS. But before you

fire off an angry E-mail, you should check several things. The first is that the aspects for

a signal are defined correctly in the template for the signal (Section 8.1). Then check that

the signal uses the template (Section 9.2.1). Finally, check that decoder instructions have

been defined for each color or semaphore position (also Section 9.2.1 and Section 14.7).

Something that often happens is that the conditions designer uses for determining colors

and positions change after the decoder instructions have been defined. For example,

suppose you begin by not assigning speeds to any tracks. CATS will automatically make

them “default”, which translates to “normal” on straight routes and “medium” on

diverging. All of your signal templates will allow you to set aspects for indications that

do not have “limited” or “slow” speeds. Your signals will ask for instructions for the

aspects defined in the templates. Everything works. You go to a friend’s layout and see

the neat looking “Slow Approach” indication protecting entry into the classification

yard. So, you change the speed on the diverging route into your yard to “Slow”.

However, when you try it, you do not get what you expected. If you then examine the

template for the signal that protects entry into the yard, you will see some cells involving

“Slow” that can be edited, which could not before. They have the CATS default

indications. You change the aspects (say, you make the top head flashing yellow), but it

still does not work. Next you should look at the decoder instructions for the signal. You

will probably find that there is a box for “Flashing Yellow”, but it contains no

instructions. This is because the instruction window was filled out before any tracks used

a “Slow” speed, so no “Slow” indication appeared in any indication, so “Flashing

Yellow” was not needed when the instructions were first defined.

The change could be in the reverse direction. A speed that was not used is no longer

defined. In that case, some instructions have been defined, which will never be executed.

17.5 The Tracks are Drawn in Odd Colors

Designer uses the following colors for drawing tracks (the colors can be changed in the

color selection pop-up – Section 14.1.1).

 Error (default is red): there is something wrong with the tracks that CATS will

not like. If just the rails forming switch points are in the Error color, then the

points are missing a definition of the normal route. Fix this because CATS will

crash (Section 9.3). If non-point tracks are drawn in red, then the tracks are either

not in a block or the block is not named (Section Error! Reference source not

found.). This is not fatal. CATS will run, but the tracks will not show up.

 Block Empty (default is white): the tracks are in a named block and detectors have

been defined for the block.

 Dark (default is grey): the tracks are in a named block and at least one detector

has not been defined.

18 Installing and Building from the Source Code,
Under eclipse

This section is not for the faint of heart. It is for anyone interested in building the

designer application from the source code. I built it using eclipse (from

www.eclipse.org, an open source development toolset). It should build under other

development environments, but I had one that works, so have not experimented.

When I release a new version of designer, I also post the source code. I package the

source and eclipse settings in a zip file for separate download. Here is how I set up a new

build environment:

1. I create a new eclipse project.

2. I download the designer.zip file from the web site.

3. I unzip the designer.zip file in a separate directory (folder).

4. I select (or create) the designer project from the eclipse project navigation list.

5. I import the designer “file system” where the unzipped files reside

Designer needs very few supporting files. It needs a Java runtime, jdom.jar (for handling

the XML files), and log4j.jar (for error reporting). The first comes with the Java

Software Development Kit (SDK). I use the latter two from the JMRI distribution.

The launchers (designer.bat and designer.csh) are constructed by hand. They are very

simple.

19 References
 “How to OPERATE Your Model Railroad”, by Bruce Chubb

 “Realistic Model Railroad Operations” by Tony Koester

 “All About Signals” by John Armstrong

 “Railroad Signaling” by Brian Solomon

 NMRA Operations Special Interest Group (OP_SIG) -

http://www.opsig.org/resources.shtml

 “Absolute-Permissive Block Signals”, parts 1-5, by Jay Boggess, Model

Railroader, Nov. 1991 – Mar 1992

 “Signal Basics”, parts 1-3, by Doug Geiger, NMRA Bulletin, Aug.-Nov., 1996

 http://www.lundsten.dk/us_signaling /abs_st_sp/ p_index.html

 http://broadway.pennsyrr.com/Rail/Signal/

 http://www.ctcparts.com/aboutprint.htm

 http://deltareum.com/signal_progressions.htm

http://www.eclipse.org/
http://www.opsig.org/resources.shtml
http://www.lundsten.dk/us_signaling%20/abs_st_sp/%20p_index.html
http://broadway.pennsyrr.com/Rail/Signal/
http://www.ctcparts.com/aboutprint.htm

