
CATS User Guide (Version 2.39)

1/15/2018
1 Introduction ... 1

1.1 What is New and Different ... 2

2 Setting Up ... 8

2.1 Starting CATS – Windows ... 9

2.2 Starting CATS – Macintosh .. 9

2.3 Starting CATS – Linux ... 9

3 Getting Started .. 9

4 The Operating Session (CTC and DTC) ... 23

4.1 Setting Signals .. 23

4.2 Throwing Turnouts ... 25

4.3 Train Detection ... 25

4.4 Tracking Trains ... 26

4.5 Track Authority ... 27

4.6 Out of Service ... 27

4.7 The Callboard.. 27

4.8 Keyboard Shortcuts ... 28

5 The Open House ... 29

5.1 Setting Signals .. 30

5.2 Throwing Turnouts ... 30

5.3 Train Detection ... 30

5.4 Tracking Trains ... 30

5.5 Track Authority ... 30

5.6 Out of Service ... 30

5.7 The Callboard.. 30

6 Record/Playback ... 30

7 Compatibility .. 32

8 Troubleshooting .. 33

8.1 The Disappearing Window ... 33

8.2 Warnings and Error Messages .. 33

8.3 “Found a track in section (x,y) that is not in a Block” .. 33

8.4 Java Logging ... 34

8.5 JMRI Preferences .. 34

8.6 CATS Cannot Talk to the Layout ... 34

8.7 Turnouts Do Not Move ... 34

8.8 JMRI Version .. 35

8.9 The Signals are not Right .. 35

9 Installing and Building from the Source Code, Under eclipse 35

10 References ... 36

1 Introduction
The Computer Automated Traffic System (CATS) is a versatile program for controlling a

model railroad. It supports CTC, DTC, ABS, or APB disciplines over blocks of railroad.

Because it is built on top of the JMRI model railroad interface, it can be used with

different computer, DCC, and serial control systems.

CATS was originally written for Pat Lana’s N scale Cedar River and Iowa Central

(Crandic) model railroad layout, but was generalized so that it can control turnouts and

signals on most model railroads. Without the Crandic, this program would not exist.

Without JMRI and the volunteers who have worked on it, this program would exist only

for the Crandic.

CATS is the second program in a suite. It requires an XML description of the railroad,

generated by the designer program, the first program in the suite. The designer is a

graphics based program which allows the user to visualize the dispatcher panel presented

by CATS and to associate DCC information with items on the layout (signals, turnouts,

etc.). So, before CATS can do anything useful, it needs the XML description from

designer.

The price paid for the versatility of CATS is that the user must also have the Java

runtime environment (Sun’s jre), JMRI library, and jar files. So, you will need to

download them before beginning. But this is a small price because the JMRI programs

are useful in their own right for programming decoders, monitoring DCC, discovering

sensor addresses, testing out things, and so on.

1.1 What is New and Different

Version Date Changes Section

0.24 7/29/05 Added Jobs screen

 Added checks on version of XML file

 Added metered controls

3 (item 8)

3 (item 4)

0.25 9/8/05 Reworked logging

 Refresh screen changes cursor back to arrow

 File selections start in CATS directory

 Added file name filter for .xml files

 Added DTC

 Added fast clock selection

 Fixed bug where sensors had to trip twice

3 (item 3)

3 (item 3)

3

3

4.1

0.26 11/11/05 Added an indeterminate state for turnouts with

feedback

 Reworked jobs, crew, and train menus

 Changed Loconet governor default to 0

 DTC signals are control points

 Track reservations are cleared when a turnout

moves

 Changed train tracking to be more robust

4.2

3

3 (item 3)

4.1

0.27 11/20/05 Added a time on duty field to Crew screen

 Added routine for computing relative time

 Added Crew hours support

4.7

4.7

4.7

0.28 2/5/06 Minor bug fixes

0.29 4/6/06 Minor bug fixes

 Added turnout tests

 Rewrote tracking algorithm

0.30 4/26/06 Minor bug fixes

0.31 8/30/06 Made compatible with designer for N Scale

convention

0.32 9/21/06 Implemented approach lighting

 Implemented software light flashing

 Reworked decoder lists so that all outputs can

be a list

 Added drop downs so new JMRI device types

can be added without rewriting this

 Added train label selection

0.33 9/25/06 Fixed bug with reservations

 Fixed outstanding bug with protected speeds

0.34 10/22/06 Bug fixes – no operational changes

0.35 2/10/07 Bug fixes

 Added support for Loconet push button

switches

 Changed the “refresh” and Loconet “governor”

values – 1 millisecond is higher resolution than

supported by most computers

 Adjustments can be created in designer and

imported into CATS when the layout

description is loaded

 The screen size and location can be specified in

designer and imported into CATS when the

layout description file is loaded

 This version of CATS should be able to run

older layout description files

0.36 3/29/07 Added OOS and track authority messages to the

session log

 Added the ability to replay one or more session

logs

 Fixed a bug where the JMRI Loconet turnout

decoder prefix was defined as “LN”, rather than

“LT”.

 Changed the priority on mouse clicks so that a

train label is looked for first. Labels were being

stuck behind signals and hard to move.

 Enhanced APB so that a vacated block looks at

the neighbor of the entrance point to see if it

should delete the route or keep it. This

eliminates the need for control point signals

6

3 (item 3)

4.4

between OS sections.

0.37 4/20/07 Fixed a bug when reacting to Turnout (“T”)

decoders. The listeners reacted to the previous

state and not the current, so were “one step

behind”.

 Fixed a bug when sending to a Sensor (“S”)

decoder. Throw and Close were reverse

between sending and listening. Since most

Sensors are used for listening, the sending

changed.

 Added an option to change the base of a signal

icon to an inverted “tee”.

 Added an option to remove the arrow head

from track routes.

 Added an option to disable the algorithm that

attempts to minimize the number of tracks that

span from a row to the next under it.

 Added an option to consider decoder addresses

when checking if it is safe to throw a turnout.

 APB routes can only be created on a block

protected by a panel signal. This eliminates

some false routes when starting CATS.

 Fixed a sequence problem on turnouts with

feedback. If the feedback decoder address was

the same as the command, the turnout would

appear indeterminate.

 Fixed a bug when reading in a layout file where

text values were mangled.

 Fixed a bug in replaying a session where a crew

member was reassigned. This resulted in a Null

Pointer Exception.

 Fixed a bug in replaying a session where tying

down a train was not recognized.

 Modified “Refresh Layout” so that the

commands to request the layout’s state are

queued, so they go out after the commands that

update the turnouts and signals.

0.38 6/3/07 Added a menu item to set all controlled

turnouts to their straight route

 Modified how a layout is loaded. There was a

race condition involving Swing when the XML

file specified the panel size.

 Corrected signals so that a Control Point is any

signal on the panel and an Intermediate is a

signal on the layout, but not the panel.

 Fixed a bug seen on Macintoshes that did not

provide a way for entering the name for a

recording file.

 User names are now added to Named Beans so

that scripts can refer to them.

 Reset the default refresh delay back to 0 msec.

 Reworked session logs so that only tabs are

accepted as field separators.

 Fixed a bug in loading a layout which set all

decoders to their default state.

 Fixed a bug where a turnout with feedback,

moved under local control might require the

dispatcher to move it twice to regain control.

0.39 8/2/07 Fixed a bug that prevented a route from being

re-established if a block in it cleared.

0.40 8/18/07 Implemented “Advance Approach”, “Advance

Limited Approach”, “Advance Medium

Approach”, and “Advance Slow Approach”.

 Added an option for tracing decoder locks

2.0 1/13/08 Replaced the jdk-jdom11.jar library with

jdom.jar, which resulted in changes to some

XML method names. This makes the runtime

compatible with JMRI 2, but no previous

versions.

2.1 3/3/2008 Fixed some bugs with advance indications.

 Fixed a bug with an intermediate signal

protecting a dispatcher controlled turnout.

 Separated the tracks in a crossing (diamond)

into separate detection blocks.

 Fixed a screen painting problem in which the

screen area painted was too small.

 Added some shortcut keys.

4.8

2.11 3/23/08 Corrected a bug when shared decoder addresses

might lock up.

 Reworked right mouse button click on a train

label so that all the information on the train can

be edited.

 Fixed a bug when tying down a train did not

change the train label’s color or release the

crew.

 Fixed a bug where the Enter key had to be

pressed in a menu for editing on the field to be

complete.

 Restored the cursor to the default whenever a

window closed.

8.7

4.4

 Added a test in APB to resolve an ambiguous

situation when deciding which train entered a

block.

2.12 7/15/08 Fixed a bug in crossings where both legs used

the same decoder address. Occupancy would

color only one leg.

 Fixed a bug in which it was hard to grab a train

label with the mouse. Larger labels were harder

to grab than smaller ones.

 Added a keyboard shortcut (control+e) for

quickly changing the train labels between train

symbol and lead engine (just like the

prototype!).

 Removed a Null Pointer Exception bug when

moving a train label.

2.13 12/28/08 Added some preventative code for a null

pointer exception

 Fixed a bug where trains that have completed

their work could be assigned a crew.

 Added signals to spurs so the dispatcher cannot

move points on spurs.

 Reworked how signals pass information to fix a

bug.

 Changed window title on crew edit window.

 Changed “Save” to “Start Recording”

 “Start Recording” now begins by saving the

state of the CTC panel.

 Fixed a bug when changing an extra job to a

non-extra job.

 Added support for Train Status Client

applications.

3

6

3 (item 5)

2.14 2/2/09 Fixed a bug when a turnout moves in a

reservation.

 Fixed a bug introduced in 2.13 involving spurs

in ABS.

 Reworked how CATS decided when to create a

JMRI device handler to remove duplicate

Loconet handlers.

 Granting Track Authority can light/extinguish a

lock light on a spur.

 Refreshed the JMRI name list.

2.15 7/5/09 Fixed a bug in the logic for locking decoders

where a lock would not clear if a locked

decoder moved.

 Added “alignment” attributes for the fields in

Train, Crew, and Job tables so the cell text can

be left justified, centered, or right justified.

 Added enforcement of dispatcher control of

turnouts so that if a local crew moves a turnout

without track authority, CATS restores the

turnout.

 Fixed some problems when using hidden track.

 Added a trace capability to Java log files so that

each Section’s coordinates are recorded in the

log, when the Section is read from the XML

file.

 Added crossings on Section edges, permitting

natural looking “scissors”.

Section 3

(item 4)

2.16 7/21/09 Updated for JMRI 2.5.5+ compatibility.

2.17 9/25/09 Added the ability to change the color of things

independent from other things

 Changed the internal handling of tables –

should be invisible

 Removed some compiler warnings – should be

invisible

 Fixed a bug in software controlled flashing of

signals.

2.18 11/20/2009 Added a user definable color to panel signal

icons for signals not involved in a route.

 Fixed some bugs (see the release notes)

2.19 3/28/2010 Updated version number only

 Added build instructions to these notes

2.20 11/23/2010 Updated for Java 5 generics

 Compiled under Java 1.5_22

2.30 11/26/2010 Updated for JMRI 2.10 compatibility

2.21 2/28/2011 Maintained JMRI 2.8 support

 Reworked CATS for supporting TrainStat edit

requests

 Fixed some bugs in CATS (see release notes)

2.31 2/28/2011 2.21, but support for JMRI 2.10

2.32 1/2/2012 Added support for releases later than JMRI 2.14

 Added interworking with Operations

 Completed lunar aspects

 Fixed a bug where arrows were dropped

 Compiled to JMRI compliance levels

2.33 7/29/2012 Added more interworking with Operations –

CATS gets # of cars, length, and weight after

each move

 Updated check on version that layout was

created to accept 2.13

2.34 2/14/2013 No functionality changes. Fixed an

incompatibility introduced in JMRI 3.3.1

2.35 Test release

2.36 2/14/2016 No functional changes. Fixed an

incompatibility introduced in JMRI 3.10. Built

with Java 1.8.

2.37 3/20/2016 2.36 was built on a development release

 Signals protecting unbonded and end of track

were wrong

 Removed telling Operations when trains are

terminated (the dispatcher could terminate a

train on an A/D track which would free its cars

before they are classified)

2.38 7/16/2016 JMRI 4.3.5 had a change that prevented CATS

from completely terminating when the Exit

button was selected or window closer clicked

 JMRI 4.4 changed something in how Logix

starts up so that JMRI panels imported into

CATS via designer do not start Logix. A

consequence of fixing this change is that the

CATS window closer is ignored.

2.39 1/15/2018 Changes to JMRI after JMRI 4.8 broke things

in CATS. These changes make CATS

compatible, again.

 Modified the designer scripts so that they don’t

specify the libraries needed, but the location of

the libraries.

2 Setting Up
The Crandic RR uses seven files and all are placed in the same directory as the JMRI

files

 cats.bat is a command script to simplify running CATS under Windows. It uses

the JMRI launcher. It has a command line for Windows 32 and one for Windows

64. Uncomment (remove the ::) for the version of Windows you are using.

 cats.csh is a command script for running CATS under Linux or MacOS.

 cats.jar is the dispatcher panel

 compass.gif is a logo with arrows showing compass directions, for the Crandic

 crandic.gif is a logo for the Crandic that appears on the main JMRI window. It

should be placed in either your JMRI folder or the resources folder in the JMRI

folder.

 Crandic.xml is a description of the Crandic, controlled by CTC rules (if you try

the Crandic dispatcher panel, be sure to set your JMRI connection preferences to

Digitrax and Loconet Simulator)

 designer.bat is a command script to simplify running the designer program under

Windows. It has multiple versions of a command to launch designer, depending

upon how Windows is configured.

 designer.csh is a command script for running designer under Linux or MacOS.

 designer.jar is the program used to describe the layout

 Ops.xml is a layout file that shows how CATS and JMRI Operations exchange

information. This uses the default contents of Operations. Be sure to set the

JMRI preferences to Digitrax and Loconet simulator to run it. Also, be sure that

Simple JMRI Server is enabled.

 Shortcut to cats.bat is an example of a Windows shortcut for running cats from

the desktop

The crandic.gif file should also be placed in the resources directory of the JMRI

directory. If you do not want to run the Crandic, then only five files are needed,

everything but the XML file and compass.gif. JMRI version 2 (or later) is needed to run

CATS.

Under Windows, we made shortcuts to the .bat files and placed the shortcuts on the

desktop.

CATS was created under Java 1.8.0_25. It Java 1.8 or later, as does JMRI.

2.1 Starting CATS – Windows

The easiest way to launch CATS under Windows is to create a short cut to cats.bat and

place the shortcut on your desktop. As explained in the troubleshooting section (8), it is

also possible to bring up a command window, “cd” to the JMRI directory and just enter

“cats”.

2.2 Starting CATS – Macintosh

One way to start CATS is to open a terminal window. In that window, navigate to where

cats.csh is installed and execute it. There may be other ways, but I do not have access to

a Macintosh to discover them.

2.3 Starting CATS – Linux

Since CATS requires graphics, you must install a windowing package (e.g. gnome or

kde) on your computer. With the window manager running, you can open a terminal

window. In that window, navigate to the JMRI directory, where you installed CATS.

You can execute CATS from there (e,g, “./cats.csh”, “sh cats.csh”, etc). Your window

manager may also allow you to create a shortcut that you can place on your desktop.

3 Getting Started
Assuming a layout description exists and that it contains all three of the layout, typical

trains and jobs, CATS is most easily started by running an operating system dependent

command script (see previous section). The command script has all the magic

incantations to Java.

1. Simply launch cats.bat (Windows) or cats.csh (Macintosh OS X or Linux) to start up

CATS1.

2. Several windows will pop up. All but one are part of JMRI, so the JMRI tool set is

available while running the dispatcher panel.

3. The last window created is a blank dispatcher panel. Use the File -> Open menu

item to navigate to the XML description file and open it.

If you look at File again, you will see that Open is greyed out and Start Recording is

an option. If you select Start Recording, then the current train locations and crew

assignments (as well as subsequent train movements and crew assignments) are

1 If a file name is provided to CATS when it is invoked, it will attempt to open that file as the layout

description. For example, if “crandic.xml” is added to the end of the cats.bat (cats.csh) file, then when

cats.bat(cats.csh) is run, it automatically loads crandic.xml.

stored in a file you select. These actions are time stamped to allow the session to be

recreated. Thus, the file provides a record of the operating session. It is not intended

that the record be used for grading the operators, but for being used in conjunction

with multiple records for adjusting train schedules. See section 6 for details of the

record log. See item 12 for other ways to use the session log.

4. Under the Appearance menu are controls for changing the appearance of the screen

(and layout).

With these items, you can change colors, line widths, character sizes, and other

things. So, if you don’t like the color of an item, select it and you will be greeted

with a color selector through which you can choose a different color. You will have

to resize the screen to make changes in the grid size and automatic wrapping take

affect. Note that these changes apply only to this run of CATS. Permanent changes

are made with designer and recorded in the XML file.

For lack of a better place to put them, Appearance contains several other menu

items. There is a menu item (Test Layout) for running tests on the layout. It has an

item for testing all signals on the layout, either have them set to the appropriate aspect

for a common indication or a common aspect. There is another test item for throwing

all turnouts (useful for initializing a layout to a known state) and for closing all

turnouts. This is useful for synchronizing the positions of feedback turnouts with

what CATS thinks they are. There is a test item for setting all the turnout lock lights.

Another test exists for setting all “automatic” switches to their straight route. The last

should be done before beginning operations. Though it checks for block occupancy

before throwing a turnout, some cars may not trip the detector and this would move

the turnout under them.

After running tests, you can select Refresh Layout and CATS will attempt to set all

signals, lock lights, and turnouts to the condition shown on the screen.

If the screen looks funny (for example, the mouse cursor is not a pointer), you can

select Refresh Screen and have the screen redrawn. With a change in version 2.11,

the cursor should always be a pointer, but if it is not, click on Refresh Screen.

The Appearance menu also contains some items for debugging and tuning the layout

control. Under Trace Items a checkbox exists for printing on the Java console signal

changes when sent to the layout and for printing when the number of locks on a

decoder changes. It also has an option for tracing the communications with JMRI

Operations.

Under Appearance->Adjustments, Occupancy Debounce controls a “debounce”

value that can be selected for occupancy reports. CATS will hold the occupancy

report until it has been stable for the number of seconds desired; thus, filtering out

“phantom” reports. Another item (Refresh Delay) selects a delay introduced after

every message sent to the layout when doing a layout refresh. This delay is intended

to prevent CATS from overwhelming the layout with messages. The final delay

(Loconet Governor) is on the number of milliseconds seconds between commands

sent to the Loconet operation2. This allows the recipient device time to process one

command before the next is sent.

The Engine Labels checkbox is used for selecting what the train labels on the panel

show. If checked, then they are the lead engine number. If not checked, it is the

train’s symbol.

Train Tracker is a menu item for enabling or disabling automatic train tracking.

When train tracking is enabled, CATS will attempt to move a label when an

occupancy detection is received. Thus, train labels move around the layout without

dispatcher intervention. Train labels do not move automatically from detected tracks

into undetected tracks because undetected tracks do not report occupancy. Train

Tracker is an option because it works well when the detectors behave themselves and

2 This applies only to decoders defined as ML, MR, or MS.

do not generate false reports. If the detectors are not well behaved, then it is best to

disable automatic tracking.

Tee Base changes the base of signal light icons. When checked, the bases are drawn

as an inverted “tee”. When unchecked (the default), the bases are drawn as triangles.

Changing this option takes affect immediately, but you will need to refresh the

screen.

Direction Arrow is another option for changing how the screen looks. If checked,

arrow heads are placed on the exit ends of routes. When unchecked, arrow heads are

not drawn. Changing the option takes affect immediately, but only for routes created

after the change. Existing routes are not changed.

Automatic Wrapping is an option for controlling how the tracks are distributed on the

panel. If the box is not checked, CATS tries to put as much on a “row” of tracks as it

can, from the left edge of the panel to the right. If the box is checked, CATS

computes which columns will fit on a row, then works from the right edge back to the

middle of the row and breaks the row at the minimum number of tracks farthest to the

right that it can find. It tries to minimize the number of tracks that “wrap” from one

row to the next. After changing this option, the screen size must be readjusted (i.e.

resize the panel) to trigger a relayout of the tracks.

Lock Turnout Decoders is an option for those layouts that might have multiple

turnouts using the same decoder addresses (e.g. on a cross over). When checked,

CATS will remember the decoder commands that would move locked turnouts and

locks other turnouts that use those commands. This could be considered extended

interlocking between turnouts. However, this checking takes some time (and runs the

risk of not removing all the locks), so if your turnouts do not share decoder

commands, it is best to leave this box unchecked. Should you encounter a turnout

that was locked (i.e. was occupied, was in a route, was OOS, or was granted track

authority), appears like it should be unlocked, but does not move, unchecking this box

will turn off decoder locking. If you then check the box, locking will be turned on

again, but the locks prior to unchecking the box are lost. So, to clear all decoder

locks, uncheck, then check the box.

Reverse Local Operations is a checkbox for enforcing dispatcher control of turnouts.

When it is checked and CATS sees that a turnout without track authority moves,

CATS will send the commands to the layout to move the turnout back. If turnouts

are not behaving properly with the box checked, uncheck it and the change will take

affect immediately.

If CATS provides the timing for flashing signals (software flashing), then the last

item (Flash Rate) allows you to fine tune the flash rate.

5. The Network pull down is used for setting CATS into a server mode, where it will

report changes in trains (primarily crew and location) to a Train Status Client and

for connecting to JMRI Operations.

The top third of the pull down describes the network:

 IP address being used by the CATS computer

 Network name of the CATS computer

 If the CATS computer has an active network connection or not

 How many Train Status Clients are listening for changes to trains.

The middle third of the pull down is used to control the train status server function.

 The Server Port is used to change what network port the train status server is

using. This is useful if there is another application using the same port, a

firewall problem, or possibly some other network problem. The default port is

54321. If you feel that you need to change the port number, first uncheck

“Start TrainStat Server” so that CATS releases any connections that it has to

the network. Enter the new port number and touch Enter (to tell CATS that

the entry is complete). Finally, check “Start TrainStat Server”. If the new

port is also not available, you will see an error message (on the console).

 A Start TrainStat Server checkbox. When checked, CATS is requested to run

the train status server function.

 Refresh Status forces CATS to update all Train Status Clients with the

current state of all trains.

The bottom section of the pull down creates a pop up window for configuring the

network connection to JMRI Operations. JMRI Operations can be running on another

computer (in which case, you will need to fill in the network information for how

CATS can find the other computer) or on the same JMRI instance as CATS is using

(in which case, most of the information can be left blank). The pop up looks like:

If known, you enter the network name of the JMRI computer into the top field. If the

name is not known, but the IP address is, then the IP address is entered into the

second field. The port fields can be left blank unless there is a conflict with another

application using the same ports. By default, Simple JMRI Server uses port 2048 and

CATS uses port 51431. Finally, the check box requests a connection to the Simple

JMRI Server (checked) or drops the connection (unchecked). Just because the box is

checked, a connection may not exist (e.g. a firewall prevents CATS from talking to

Simple JMRI Server). The way you can tell is that when a connection is made, the

above window has an additional option – to Refresh from Operations:

In addition, Simple JMRI Operations must be started on the JMRI instance running

Operations (regardless of if it is the same JMRI as CATS or not). From the splash

screen, Edit->Preferences,

Changing this window will require the JMRI running it to restart.

After CATS is configured to communicate with a Simple JMRI Server, CATS will

received all train length information from Operations and update its internal train

tables. In addition, CATS will tell Train Status whenever a change in length is

detected (after moving a label). CATS will tell Operations whenever a train arrives

in a Station (Operations Location). Finally, CATS will tell Operations whenever a

train terminates or ties down3.

6. The next menu pull down is Trains (also via the control+t key sequence).

3 To rerun a train, you will need to rerun it in CATS and in Operations.

It is used for creating trains and changing their state. It has one menu item (Load

Lineup) for reading in a lineup. The lineup is an XML file, created through

designer. By allowing the lineup to exist in a separate file, you can have multiple

lineups (e.g. even day/odd day or morning/afternoon) and select the one you want to

use on the fly. It will be described in detail later. It has an Edit Lineup item for

viewing, adding, and changing the information about a train. The last item, Rerun

Train, is a way of running a train again, that has completed its work.

7. Next to Trains is Crew (also via the control+c key sequence).

Use the Edit Crew selection to identify the crew assigned to each train. Though you

can add and delete crews at any time, it is usually easiest to add them before starting

the operating session. It has an option (Load Crew) for reading in a file which

contains crew names, one name per line. It also has an option (Legal Hours) for

setting the “hog law” – hours a crew can work before they must be relieved.

8. The next menu is the Jobs menu (also via the control+j key sequence).

Like the Crews menu, it has an option to edit the list of jobs and job assignments and

another option to read in a list of jobs.

9. After the trains, crew, and jobs are read in, you should assign crew to jobs. This step

is strictly optional. Any crew not assigned to a job or assigned to a job with the

“Train” field checked will be put on the “Extra Board” and appear in selection lists

for assigning crew to trains.

Notice that you can add jobs at any time. You can select a block of jobs and reorder

the list. You can adjust the column widths and if you select the “Accept” button, the

adjustments will be remembered for the duration of the operating session. Finally,

you can remove superfluous jobs for the rest of the operating session. However, you

can change the titles and hide or expose other fields only in designer.

10. This next step prunes the train list. Often a schedule will have trains that will not run

in a particular operating session. At the beginning of the operating session use

Trains -> Edit Lineup4.

4 Alternatively, you can record the preparation of an operating session and terminate unused trains during

preparation. When the preparation log is replayed, they will be removed from the active lineup.

That will bring up the list of all trains known by the dispatcher panel. Select one (or a

block) and click on Terminate Train and that train will be hidden from lists and not

appear on the layout. If you removed the wrong train, do not worry, it can be put

back on the known list by using the Trains -> Rerun Train selection. You should

cut back the list early, so you do not have to look at unwanted trains. Like the job

screen, you can reorder the trains, add new trains, change the column widths, and

change any information for a train that was set as “Editable” in designer. The Tie

Down Train button works a little like the Terminate Train button. It is used to tell

CATS that the train has completed its work, but the train’s label remains on the

panel.

Often, a visitor will bring a guest train. It is added to the list of trains with the Trains

-> Edit Train -> Add Record menu item. Selecting it pops up a blank row under the

currently selected row. Trains can be added at any time, but like crew, it is best to

add them before the operating session begins, when the dispatcher is under less

pressure.

11. Now that the train list is tailored to the operating session, you can position the trains

on the layout screen5. To position a train, move the mouse cursor to the section of

track corresponding to where the train should sit and touch the right mouse button.

You will see a pop up menu. Select the Position train menu and click on Accept.

You will see a list of trains which are not removed and are not on the screen. Select

the one that is sitting on that track. This is another operation that can be done at any

time, but it is best to set all the starting conditions before beginning so that the screen

does not show an occupied track as empty. Some trains will not be on the layout

when the operating session begins (for example, a train goes out with one symbol and

5 See also the discussion on recording sessions and replaying logs for a way to automate this step.

comes back with another). That is fine. When the train appears on the layout,

position it at that time.

12. Under the File menu is the Replay button. It is used to read in a session log file

(created by Start Recording from above). It “replays” the log and moves trains,

changes assignments, etc. It serves two useful purposes. It was intended to restore an

operating session. On the Crandic, one of our dispatchers is quite talented at crashing

CATS late in an operating session. Because of this creativity, it was easier to replay

the activities that happened before the crash than “user proof” CATS. A fall out of

adding this capability is that you can record the initial positioning of trains and other

things (such as taking tracks out of service) in preparation for an operating session.

At the beginning of the actual operating session (after loading the layout, trains, and

crew), you can replay the preparation log. It much simplifies starting CATS.

Replay will ask if you want to preserve timestamps from the log. The guideline is

answer “no” when starting an operating session. Then, the timestamps will reflect the

time at which the log is replayed, so all the movements will be recorded as though

they just happened, which makes later analysis easier. If you are resuming an

operating session, you will probably want to answer “yes” so that the durations of the

previous segment are preserved.

13. We are almost ready to begin, but first the crew must be given their initial

assignments. This step is also optional. There are several ways of doing this. At the

beginning of an operating session, the easiest way is Train -> Edit Lineup or Crew -

> Edit Crew. They do similar things, but from different perspectives. Train -> Edit

Lineup brings up a list of trains that have not been removed and has a pull down list

containing the crew list for each train. By selecting an item from the crew list, you

associate a crew with a train. Conversely, Crew -> Edit Crew creates a list of crew

(those not assigned to a job or assigned to a job with the Train box checked) with a

pull down menu of trains that have not been removed. To associate a train with a

crew, select the train. While you are making the assignments, nothing prevents you

from assigning one crew to multiple trains or multiple trains to one crew. However,

when you click on Accept, the assignments will be checked and a pop up error will

tell you that there is a problem. The assignment window will remain until the conflict

is resolved or the Cancel button is clicked.

In general, the human interface follows the model of Windows programs. A single click

of the left mouse button performs an action immediately. A single click of the right

mouse button brings up a menu if the mouse is positioned over a train label, a section of

track, or a signal symbol. The menu is tailored for the object under the mouse.

Now we are ready to dispatch, or as Fred Carlson says, “Let the killing begin.”

4 The Operating Session (CTC and DTC)
This section discusses running the program as a CTC machine. This is the way we like to

hold an operating session on the Crandic. We like to run with ABS or APB during open

houses because trains tend to simply run without doing much switching. This gets pretty

boring and tedious for the dispatcher. Plus guests often break the dispatcher’s

concentration. The next section (5) will discuss what makes ABS and APB different

from CTC6.

4.1 Setting Signals

Under CTC, signals are in their most restrictive aspect (Stop), until the dispatcher

reserves a route from the signal to its successor, in the direction of travel. When the

dispatcher reserves a route, all signals in one direction of travel may show “movement

allowed” indications. All signals facing the opposing direction of travel remain in their

most restrictive aspect. Thus, a train is given permission to go from only point A to point

B. Movement from point B to point A is prohibited by signals.

Reserving a route also locks the route. This means that until the existing reservation is

cleared, a reservation cannot be made in the opposing direction or a turnout on the route

cannot be changed by the dispatcher. The computer will not allow the dispatcher to set

an unsafe route. An unsafe route is one which conflicts with an existing route, one in

which the dispatcher has granted local switching to a block, one in which the dispatcher

has taken a block out of service, one which has one or more turnouts aligned to a

different route, or one in which a block is shown as occupied.

Depending upon how the layout is configured, local crew may still move turnouts. The

Appearance -> Reverse Local Operations checkbox will cause CATS to move turnouts

back, if the turnout has not been covered by track authority. A side affect is that the route

reservation will be cancelled (I will fix this someday), but the local crew will learn that

moving turnouts without permission does them no good.

The signals for the reserved route will obey the “Signal Aspects and Indications” of the

employee handbook (you supply the employee handbook). The symbols representing the

signals on the dispatcher panel will be “empty” (white or grey) if not involved in a

reserved route; red, if in the opposing direction; yellow, if the next signal is red; or green,

if the next signal is not red. Thus, the symbols mirror the signals the engineer sees, to the

extent that can be done with five colors. The colors of the signal icons are only loosely

connected to the actual layout aspects. It is possible to define an aspect to show yellow

(e.g. normal approach medium) and the icon to be green (because the next signal is non

red).

6 Actually, all four disciplines can be mixed on the same layout. CTC or DTC is used where the dispatcher has

direct control over the signals. ABS or APB is used where the dispatcher has no control over the signals.

The way the dispatcher reserves a route is to click the left mouse button when the mouse

is positioned over an “empty” or “off” signal symbol. If the reservation is accepted, then

the signal symbol changes color and the tracks composing the reserved route turn green

with an arrow head pointing to the exit7 of each block. A subtle distinction exists

between white “empty” icons and “grey” empty icons. White ones have a physical signal

associated with them on the layout. Grey ones do not; thus, the color difference is a

reminder to the dispatcher that the train engineer does not see a signal that the dispatcher

does.

Tip: you will get more reliable response by clicking on the signal icon “head” (not the

mast) because of the way CATS looks for “hot zones”.

There are two ways to clear a reservation. The dispatcher can cancel a reservation by

clicking the left mouse button when positioned over a signal iconl that is green or yellow.

Alternatively, when a block within the reserved route is occupied, the reservation is

cleared, but the block still shows occupied. This means that the signals again show their

most restrictive aspect.

A Control Point (CP) is a signal (icon) on the dispatcher panel. An Intermediate Signal

(IS) is a signal on the layout without an icon on the dispatcher panel. A route request

propagates from the CP where the request is made, down the tracks, to the next CP. If

there is an opposing reservation anywhere on any block, the request will be rejected. If

there is at least one IS between the request origination signal and an obstruction, then the

request will be allowed, but the reservation will stop at the IS protecting the obstruction.

When the obstruction clears, the reservation will continue to propagate. If there is an

obstruction between the request origination signal and any signal, the request will be

denied. Similar rules hold for clearing a route.

Routes can be “fleeted” by using the right mouse button when positioned over a signal

symbol. Fleeting is best used when one or more trains are taking the same route, in the

same direction without opposing or crossing traffic. Fleeting means that after a block in a

reserved route is occupied, then emptied, the reservation is renewed automatically.

Fleeting is cleared by using the right mouse button and selecting the menu item or

clicking the left mouse button when positioned over a signal symbol.

The logic behind fleeting forms the basis of DTC. Direct Train Control can be used

when there are no signals protecting a block on the layout. In that situation, the

dispatcher verbally tells the crew the limits of their train movement. The dispatcher

clicks on the signal (similar to CTC) and the route is reserved. After the train passes over

each block, the block does not return to idle, but shows a different color, indicating that

the track is not in use, but has had its reservation fulfilled; thus, it belongs to the train that

went over it. The dispatcher regains ownership by clicking on the signal.

If the dispatcher places the mouse cursor over a signal symbol that is red and clicks the

left button, then the signal on the layout shows “Stop and Proceed”. This behavior was

7 The arrow head will be painted only if Appearance->Direction Arrow is checked.

requested (because the flashing red looks cool) so that the dispatcher could indicate that a

train had permission to enter a block that contained a potential hazard (such as another

train). (this feature is not yet implemented, but granting track authority yields a similar

affect). Some railroads name this feature “call on”.

4.2 Throwing Turnouts

If a section of track contains a turnout, that turnout is under dispatcher control, and the

block is not occupied, reserved, or given to local control, then the dispatcher can move

the turnout by clicking the left mouse button when not over any signal symbols or train

labels while the mouse cursor is near the switch points (preferably in the “vee” between

the routes). If the layout supports turnout feedback, the track symbol will show no points

aligned until told by the layout. If feedback is not supported, then the track symbol will

change immediately. Note that in the latter case, the symbol may not accurately reflect

the true state of the layout. If the points simply do not move on the panel, then be sure

that the spur box is not checked on the points in designer.

If Appearance->Lock Turnout Decoders is checked, and the command to move a

turnout would also move a turnout that is locked, CATS will not move the selected

turnout. Thus, turnouts can be locked at the decoder level as well as the panel view.

The “hot zone” for detecting a mouse click is the rectangular tile enclosing the turnout.

So, the mouse cursor does not have to be on the track line to register as a request to throw

a turnout. A tile could have switch points on multiple edges. In that case, CATS cycles

through the edges, flipping each, every time a click is detected.

4.3 Train Detection

If the layout supports occupancy, the tracks on the dispatcher panel will change to

“occupied” (red) in response to detection messages from the layout. An occupied block

in a reserved route will turn red, but the exit arrow will remain, showing the expected

direction of travel of the train. When the detection clears, the reservation will be

removed (unless fleeting is in affect for the block).

Blocks can manually be marked as occupied or cleared by using the right mouse button

when positioned over the desired track.

Tracks which do not have detectors associated with them are painted in a grey color, to

distinguish them from detected tracks. This is a reminder to the dispatcher that

reservations on those tracks will not clear automatically. However, positioning a train

label on undetected track will tell CATS that the track is occupied and CATS will color

the track accordingly.

4.4 Tracking Trains

As noted in “Getting Started”, train labels can be placed on sections of tracks to record

where trains are. Trains move, so the labels need to move. If train tracking is enabled

(Appearance -> Train Tracking), then the labels will follow detection reports

automatically. Otherwise, the dispatcher will have to move them manually.

The simplest way to move a train label is to place the mouse cursor over the label and

“drag” the label to another block by moving the mouse while holding down the left

mouse button. The cursor changes from its default symbol to a cross inside a circle when

the program recognizes the left button has been pushed when over a train label.

The other way of moving a train is to use the four arrow keys on the keyboard. The

problem is knowing which train will move. The normal life cycle of a train is something

like the following: it is created; it is positioned on the layout; crew is assigned to it; it

does its work; it is tied down; it may be removed. The color of the train’s label indicates

which state it is in. Trains in the first and last state have no labels on the dispatcher

panel; thus, have no color. A train that is positioned without a crew is “empty” (default

light grey). A train with a crew is almond or blue. A train that has completed its chores

is a rose color. Only one train will be colored blue – the one that has the focus and will

be moved by the arrow keys. This train is one of the ones that is positioned on the layout

and has a crew assigned to it. The “Page Up”, “Page Down”, and tab keys are used to

cycle through this set of trains (many computers do not tell CATS when the tab key is

pressed, so do not be surprised if it doesn’t work). So, to move a train on the dispatcher

panel it must have a crew assigned to it (coloring it almond or blue). If it is almond, it is

selected by repeatedly pushing the “Page Up” or “Page Down” or “Tab” buttons until it

turns blue. Then the arrow keys move it. The train will move in the direction of the

arrow key, if the track goes in that direction. So, pushing the up arrow when a train label

is located on horizontal track does nothing.

If recording is turned on, every time a train is moved, the movement is given a timestamp

and recorded for further analysis.

If the right mouse button is clicked while the cursor is positioned over a train label, the

following screen pops up:

This can be used to edit the information about the train under the cursor and is very

similar to the train edit screen, except only the information on one train is shown. Any

changes take affect when the Accept button is pushed. Note the 3 buttons in the middle:

 “Tie Down Train” releases the crew and changes the color of the train’s label,

leaving it on the panel.

 “Terminate Train” releases the crew and removes the train’s label from the panel.

 “Rerun Train” is an option on “tied down” trains, initializing one so that it can

work some more.

4.5 Track Authority

Track Authority is granted to a train to perform local switching. This means the turnouts

in the block are unlocked and the signals protecting the block are set to their most

restrictive aspect, protecting the block from other trains.

Track Authority is placed on a block by positioning the mouse cursor over a block,

clicking the right mouse button, selecting “Track Authority”, and pushing the “Accept”

button. Track Authority is removed by a similar operation. When Track Authority is

placed on a block, the block is painted blue.

On the Crandic, giving Track Authority on a block is reflected on the layout by

presenting a “Stop and Proceed” (flashing red) aspect on signals protecting the block.

Tip: It requires fine motor skills and a responsive mouse to position the cursor over a

single track in an area of congested tracks. So, for using track authority, forcing

occupancy, and using out of service, select a track in the desired detection block that does

not have other nearby tracks.

4.6 Out of Service

If a block is having maintenance performed on it, then the dispatcher should place Out Of

Service on the block. This is accomplished like “Track Authority” – placing the mouse

cursor over the track, clicking the right mouse button, and selecting “Out of Service”.

OOS is removed by the same process.

On the Crandic, no special signal aspects are used on the layout to designate OOS, but the

protecting signal drops to “Stop”.

4.7 The Callboard

The crew callboard (created during setup) lists the crew and which trains they are

assigned to. Whenever the dispatcher ties down a train or removes a train from the panel,

the crew becomes unassigned and the callboard reflects that status. So, the program helps

the dispatcher keep track of available crew.

If your operating session tracks crew time, you can set up CATS to assist in monitoring

when crew was assigned to a train and when they have to be relieved. The “time on

duty” algorithm is a little complex, but flexible. If all of the “ONDUTY” “EXPIRES

AT”, or “TIME LEFT” columns are hidden, then time is not monitored.

When determining “time on duty”, CATS looks at the train’s information. In the

following order:

 If “ON DUTY” is blank, then the clock starts when the assignment is made.

 If “ON DUTY” is an absolute value (i.e. “HH:MM” with no leading ‘+’ or ‘-‘),

then that is the time the first crew was assigned to the train. If the crew is relieved

(another crew is assigned to the train), the relief crew is on duty when the relief

assignment is made. This option simulates the crew jumping on a train at the

scheduled time, driving the train off-layout for awhile, and reaching the layout. It

accounts for the fact that the crew had worked the train before it appeared on the

layout from “somewhere else”.

 If “ON DUTY” is a relative value (starts with ‘+’ or ‘-‘), the value is added to or

subtracted from train’s “DEPARTURE” time. This also simulates a crew

working a train for some time before the train appears on the layout. In this case,

though, the time worked is tied to the train’s scheduled departure time, so if it

changes, the crew “on duty” time changes.

 If the “DEPARTURE” time is blank, then the “ON DUTY” time is relative to

when the train assignment is made.

 If the “DEPARTURE” time is absolute, then the “ON DUTY” time is relative to

that time. For example, if “DEPARTURE” is 11:45, then “ON DUTY” times of

“11:00” and “-00:45” are equivalent.

 If the “DEPARTURE TIME” is relative, then the departure time is computed

relative to the time the assignment is made and the “ON DUTY” time is computed

relative to that time.

CATS tries to make relative times absolute when they are first used. For

“DEPARTURE”, this is when a crew assignment is made. For “ON DUTY”, this is

when the train screen or crew screen is pulled up, if “DEPARTURE” is absolute.

The “dead on the law” time is computed from the “ON DUTY” time. The “HOURS”

value is added to the “ON DUTY” time to arrive at when the crew should be relieved

(EXPIRES). Thus, the “TIME LEFT” value is simply the amount of time between the

current time and the “EXPIRES” time.

The clock used for computing these can be either the computer clock or a fast clock. So,

HOURS should be chosen appropriately for the clock.

A future feature is to have CATS alert the dispatcher when a train is scheduled to depart

or the crew should be relieved.

4.8 Keyboard Shortcuts

Moving a mouse around to the menu bar, pulling down a menu, and selecting a pop up

window can be tedious and time consuming, particularly in the heat of dispatching.

CATS supports a few keyboard shortcuts for accessing the frequently used pop up

windows:

Key sequence Pop up menu

Control+c Edit Crew menu

Control+e Switch between Engine labels and train symbols

Control+j Edit Jobs menu

Control+t Edit Trains menu

“Control+c” means touch the “c” key while holding down the control (or “ctrl”) key.

5 The Open House
Layouts tend to be run differently during open houses (or work sessions) than during

operating sessions. First, the dispatcher does not exert as much control over train

movement because the emphasis of an open house is usually to keep trains moving as

opposed to simulating prototypical operation. Second, the dispatcher often has

distractions from visitors, so cannot concentrate as well during an open house. Thus, a

signaling discipline different from CTC, that does not require as much care and feeding,

might work best at an open house. ABS or APB fits that bill.

CTC could be called a restrictive discipline. Train movement is prohibited except on

explicit action of a dispatcher. ABS and APB could be called permissive disciplines.

Because no dispatcher is directly involved with the signals, train movement is allowed

unless it is unsafe (the role of the dispatcher in ABS and APB is to prohibit movement,

through some other means, such as track warrants, when it would be safe in the short

term, but could cause larger scale problems). These opposing concepts are reflected in

the “idle” signal indications. With CTC, an idle signal is the most restrictive aspect

(stop). With ABS or APB, an idle signal is the least restrictive for the conditions (clear,

approach, etc.).

What this means at an open house, is that the dispatcher only needs to tell operating trains

when to take sidings or mains. The signals do the rest automatically. It requires less

concentration for the dispatcher and is less button pushing. It is somewhat self-regulating

at the expense of ignoring train priorities.

There is a significant difference between ABS and APB. ABS works best to maintain

separation between trains going the same direction. APB works better than ABS with

opposing traffic. APB incorporates ABS for traffic in the same direction.

The details are that ABS provides a two signal buffer on either side (in front of and

behind) a train. If there is nothing in that buffer, then the engineer sees a “clear” aspect.

If there is an occupied block one signal away, then the engineer sees an “approach”

aspect. Finally, if there is a train in the block protected by the next signal, the engineer

sees a “stop” aspect. Note that direction of travel is not a factor in determining signal

aspect; thus, it is possible for two trains to end up nose to nose at an intermediate signal –

a standoff because neither can go forward due to the other. APB enhances ABS by

considering travel direction. If a train enters a clear block, then the computer does the

same thing as when the dispatcher reserves a route – sets all signals up to the next control

point, in the direction of travel to the least restrictive indication under the conditions, and

sets all opposing signals to the most restrictive.

5.1 Setting Signals

Signal indications are determined by the computer based on how turnouts are aligned and

where trains are. One difference between CTC and ABS or APB is that the signal

symbols on the dispatcher panel reflect the aspect of the signal on the layout. With CTC,

only the signal symbols involved in a reserved route are non-white (or non-grey). With

ABS or APB, no signals are white. Though not strictly prototypical, the dispatcher can

set signals with ABS and APB and throw turnouts. This provides a hybrid form of

dispatching.

5.2 Throwing Turnouts

Turnouts are thrown the same as with CTC – click the left mouse button while over track.

If the track is colored empty (white grey), the turnout will change. If it is occupied or

reserved through APB, it will not move.

5.3 Train Detection

Train detection is the same as with CTC. A block reporting train occupancy is colored

red. Turnouts cannot be moved in an occupied block. The signals protecting an occupied

block show their most restrictive aspect.

Occupancy always clears a reserved route because the computer does not know from

which end of a block the next train will enter (there is no fleeting). ABS ignores

direction of travel, so blocks are never reserved. APB tries to prevent head on meets, so

it monitors the sequence in which blocks are occupied and reserves blocks between

control points based on the order blocks are occupied.

5.4 Tracking Trains

Train labels are added to the dispatcher panel exactly as with CTC. Train labels are

moved across the panel exactly as with CTC.

5.5 Track Authority

Track Authority is applied to a block exactly as with CTC.

5.6 Out of Service

A block is placed out of service exactly as with CTC.

5.7 The Callboard

The callboard works the same as under CTC.

6 Record/Playback
When I started writing CATS, I wanted it to record all train movements because I tend to

forget to do so when I have dispatched model railroads. There are some dispatching

systems (e.g. Time Table and Track Orders), where keeping paper records is “half the

fun”, but since CATS simulates a modern, computer controlled dispatcher panel, the

computer can record consistently and more accurately than the dispatcher.

I wanted the train movement records to reconstruct an operating session, as an assist into

creating and fine tuning schedules. They have proven useful in other ways:

 Recording who worked which jobs (e.g. for the NMRA dispatcher AP)

 For automating setting up for an operating session

 For restarting an operating session that was interrupted

You may find other uses for the recordings, as well. Consequently, the following table

describes what is recorded. The recording log is a set of ASCII text lines, with tab

characters separating fields. This means you should not use tab characters in crew

names, train symbols, block names, and other text entries into CATS. In the following,

fields in bold are literal words and phrases in the records.

Event Tag Field

1

Field 2 Field 3 Field 4 Field 5 Field 6

First

Record
Created: Date Version: # CATS Version

Last

Record
Ended: Date

Add

Record
Added Time Database

Name

Field 1 Field 2 Field 3 Field 4

Change

Record
Changed Time Database

Name

Field 1 Field 2 Field 3 Field 4

Delete

Record
Deleted Time Database

Name

Field 1 Field 2 Field 3 Field 4

Train

Assignment
Assign: Time Crew running Train

Crew

Relieved
Assign: Time Crew reassigned

Crew

Reassigned
Assign: Time Crew reassigned Train

Job

Assignment
Assign: Time Crew assigned to Job

Train

Movement
Move: Time Train From to To Coordinates

Train

Removed
Terminated: Time Train Coordinates Location State

Train Tied

Down
TiedDown: Time Train Coordinates Location State

Train

Rerun
Rerun: Time Train Coordinates Location State

Set OOS OOS: Time add Block

Remove

OOS
OOS: Time remove Block

Set Track

Authority
T&T: Time add Block

Remove

Track

Authority

T&T: Time remove Block

Definitions:

 Date is the computer time and date

 Time is the computer time and date (if no fast clock) or the fast clock time and

date

 # is the version number of the format of the record log

 Version is the CATS version identifier

 Database Name is the name of one of the collection of records (TRAINDATA,

TRAINEDIT, JOBDATA, JOBEDIT, CREWDATA, CREWEDIT). The xEDIT

collections describe the format and presentation of the xDATA collections.

TRAINx, JOBx, and CREWx refer to the respective train, job, and crew

information.

 Field n is the contents of a field in a collection. It is formatted as “field

name”=”field value”.

 Crew is the name of a crew member

 Train is the unique symbol for a train

 Job is the name of a job

 From identifies a place on the layout, depending upon what has been defined. It

is the “Station” entry from a detection block definition or “unknown” if the block

defines no Station.

 To also identifies a place on the layout

 Coordinates are the coordinates on the layout, X, Y, and edge (if present). Edges

are numbered 1-4, in the order right, bottom, left, top

 State contains the internal state of the train, for debugging

 Location is a place on the layout.

 Block is the name of a block

7 Compatibility

CATS depends a lot on some other programs. It needs a JRE (Java Runtime

Environment, available for free from Sun Microsystems). This version of CATS was

written with Java 1.5. It might run under versions earlier than 1.5, but that cannot be

guaranteed.

CATS needs a layout description file created by designer. The XML structure also

changes over time as features are added and changed and introduces the possibility of an

incompatibility. The plan is that more attention will be paid to making designer

backwards compatibility and providing the translation mechanism from older to newer

versions.

This version of CATS is incompatible with JMRI 4.4 and later.

8 Troubleshooting
I wish that I could say that CATS operated perfectly and has no bugs. I cannot. It is over

30,000 lines of Java code and not everything that can be done with it has been tested.

Nonetheless, here are a few tips on troubleshooting problems.

8.1 The Disappearing Window

Many users create a shortcut and icon to the .bat or .csh file that launches CATS and put

it on the desktop, providing “one click launching”. The problem occurs when the “one

click” creates a console window, CATS has trouble starting up, dumps some messages to

the Java console, dies, and the console window disappears. All of this happens so

quickly that you cannot see what the trouble is. The solution is to run the startup script

(.bat or .csh file) by hand. Depending on your operating system, launch a command

window. Under Windows, this is performed by Start->Run. Then “change directory” to

where the startup script is located. Under Windows, the command is usually “cd

C:\”Program Files”\JMRI”. Then run CATS. Again, under Windows, type “cats”.

8.2 Warnings and Error Messages

Assuming the Java console window does not disappear, it could contain pleas for help

from CATS. So, if things seem to quit working, look at the Java console.

Do not be alarmed if a message pops up when loading an older layout description telling

you under what version of designer it was created with. As features are added to and

changed in designer (and CATS), efforts are made to allow the new versions to read in

descriptions created by older versions. This is called backwards compatibility. However,

sometimes it is not possible for a particular version of CATS to read in any description

created by any earlier version of designer. Because the amount of testing grows

arithmetically with every new release, backwards compatibility is often not tested with

descriptions. So, that message can provide some idea of how old the description is that is

being updated. As noted above, you should try reading the old description into designer,

saving it, and trying the transformed file.

8.3 “Found a track in section (x,y) that is not in a Block”

This message is shown during loading a CTC panel when CATS tries to find which

detection block a track is in and none is found. Though it may happen at other times, it

will occur when a panel created prior to version 2.1 containing a crossing is loaded into

CATS 2.1. With that release, the two tracks composing a crossing were separated into

distinct detection blocks (so that each could be controlled by a different signal discipline).

The solution is to load the panel into designer 2.01 (or later) and check that the two

tracks are in distinct detection blocks.

8.4 Java Logging

The debug philosophy for CATS has been evolving over time. The Java console is used

for most warnings and error reports, but I am increasing the use of the log4j facilities.

The file named “default.lcf” contains a filter on the kinds of messages that will be written

and where they will be written. The location of this file depends on the operating system.

It is usually in the same directory as the JMRI roster and configuration files.

8.5 JMRI Preferences

A very common problem is that you install Java, JMRI, designer, and CATS on your

layout computer. You have worked through all of its quirks and have them running. You

then copy JMRI and CATS to another computer to show it off (either in a positive or

negative sense). You fire up CATS, get the disappearing window, and follow the

troubleshooting tips above. You see a short message about “missing connection”. What

is happening is that JMRI requires a configuration file that describes the connection to the

layout. The first time JMRI is run, it prompts you for the connection and saves it in the

JMRI configuration file. That file is usually not copied to a different computer because it

does not live in the usual JMRI directory. So, when CATS runs, JMRI cannot find the

configuration file and quits. The solution is to run one of the JMRI tools (DecoderPro,

PanelPro, etc.) and set the connection.

8.6 CATS Cannot Talk to the Layout

From reading the JMRI user group discussions

(http://groups.yahoo.com/group/jmriusers/), it seems that one of the most frequent

problems is getting the JMRI to talk to the layout. I would suggest that you get

DecoderPro or PanelPro working before trying CATS. A lot more people work on JMRI

than CATS and a lot more people use JMRI than CATS, so the experience base is

considerably larger. CATS has been used primarily on Loconet systems with Locobuffer

interfaces, so I am not familiar with other systems and stationary decoders. CATS relies

on the expertise of JMRI for the layout connection.

8.7 Turnouts Do Not Move

Sometimes you will click on a turnout and nothing happens. The three frequent reasons

for this are:

 The turnout is not under dispatcher control. It does not have an “automatic switch

machine”. This means it is defined in designer as a “spur” or it may even be a

crossing and not a turnout, at all.

 Java did not pick up a mouse event in the “hot spot”.

 The decoder is locked.

The CATS “hot spot” is the grid tile containing the turnout. For some reason, swing does

not pass along the mouse click. So, you can try to click it again, or use the right mouse

button. See also Section 4.2.

Another reason is that the turnout is locked. If decoder sharing is enabled, all turnouts

sharing the same address will be locked when one is locked. To verify this is the case,

enable tracing (Appearance -> Trace Items -> Decoder Locking). A message will

appear on the Java console whenever a lock is applied to a turnout decoder, removed

from a turnout decoder, or a query is made of a turnout decoder. When a turnout is not

occupied, has a reservation through it, is included in track authority, or is out of service,

the lock count should be 0. The count can be forced to 0 for it (and all decoders), by

unchecking and checking Appearance->Lock Turnout Decoders.

8.8 JMRI Version

CATS requires JMRI version 2.14 or later. Earlier releases of JMRI used an old library

(jdk-jdom11.jar) for reading and creating XML files. Version 2 uses jdom.jar, which has

similar functions, but under different names.

8.9 The Signals are not Right

CATS takes multiple steps to generate the presentation on the signals from track

condition (occupancy, turnout alignment, route reservations, etc.). So, if the presentation

is not what you expect, there are several places to look. Here is how CATS works:

 It looks at the track conditions and generates a “rule”.

 It passes the “rule” to the Signal.

 The Signal retrieves its aspect template (defined in designer).

 The Signal finds the aspect associated with the “rule” in the template.

 The signal retrieves the SignalHeads (JMRI abstraction) for each head that it

drives.

 It picks the appearance out of the aspect for the appropriate head (assuming more

than one), and tells the corresponding SignalHead to present that appearance.

 The SignalHead figures out the commands that implement that appearance and

sends them to the layout.

So, what could go wrong?

 CATS is not generating the right “rule” for the track conditions (in which case it

is a “bug”, possible enhancement, or CATS cannot do it).

 The Signal is using the wrong aspect template (in which case, it can be corrected

in designer on the screen where the physical signal is specified).

 The template has an incorrect aspect for the “rule” (which can be corrected in the

aspect table in designer).

 The Signal is sending the wrong commands to the layout (which can be corrected

in the decoder definition page for the signal in designer).

The JMRI Signal table is useful in determining what appearance CATS is trying to drive

to the SignalHead. If it is as expected, then the problem is in the decoder definitions. If

it is as not expected, then the problem is in the first three items.

9 Installing and Building from the Source Code, Under
eclipse

This section is not for the faint of heart. It is for anyone interested in building the CATS

application from the source code. I built it using eclipse (from www.eclipse.org, an open

source development toolset). It should build under other development environments, but

I had one that works, so have not experimented.

http://www.eclipse.org/

When I release a new version of CATS,, mostly from t I also post the source code. I

package the source and eclipse settings in a zip file for separate download. Here is how I

set up a new build environment:

1. I create a new eclipse project.

2. I download the cats.zip file from the web site.

3. I unzip the cats.zip file in a separate directory (folder).

4. I select (or create) the cats project from the eclipse project navigation list.

5. I import the cats “file system” where the unzipped files reside

CATS needs a few supporting files from the JMRI project:

 jmriplugins.jar

 jmri.jar

 comm..jar

 Serialio.jar

 log4j.jar

 xercesImpl.jar

 jdom.jar

 jython.jar

 javacsv.jar

 MRJAdapter.jar

 jakarta-regexp-1.5.jar

 vecmath.jar

 jh.jar

 collections.jar

It also needs a Java runtime, which comes with the Java Software Development Kit

(SDK).

The launchers (cats.bat and cats.csh) are constructed by hand. They are very simple.

10 References
 “How to OPERATE Your Model Railroad”, by Bruce Chubb

 “Realistic Model Railroad Operations” by Tony Koester

 “All About Signals” by John Armstrong

 “Railroad Signaling” by Brian Solomon

 NMRA Operations Special Interest Group (OP_SIG) -

http://www.opsig.org/resources.shtml

 “Absolute-Permissive Block Signals”, parts 1-5, by Jay Boggess, Model Railroader,

Nov. 1991 – Mar 1992

 “Signal Basics”, parts 1-3, by Doug Geiger, NMRA Bulletin, Aug.-Nov., 1996

 http://www.lundsten .dk/us_signaling /abs_st_sp/ p_index.html

 http://broadway.pennsyrr.com/Rail/Signal/

 jmri.sourceforge.net

 http://deltareum.com/signal_progressions.htm

http://www.opsig.org/resources.shtml
http://www.lundsten.dk/us_signaling/abs_st_sp/p_index.html.
http://broadway.pennsyrr.com/Rail/Signal/

